【題目】如圖,在我國(guó)釣魚(yú)島附近海域有兩艘自西向東航行的海監(jiān)船A、B,B船在A船的正東方向,且兩船保持10海里的距離,某一時(shí)刻兩海監(jiān)船同時(shí)測(cè)得在A的東北方向,B的北偏東15°方向有一不明國(guó)籍的漁船C,求此時(shí)漁船C與海監(jiān)船B的距離是多少.(結(jié)果保留根號(hào))

【答案】

【解析】

試題首先過(guò)點(diǎn)BBD⊥ACD,由題意可知,∠BAC=45°,∠ABC=90°+15°=105°,則可求得∠ACD的度數(shù),然后利用三角函數(shù)的知識(shí)求解即可求得答案.

解:由題意可知,∠BAC=45°,

∠ABC=90°+15°=105°,

∴∠ACB=180°﹣∠BAC﹣∠ABC=30°

BD⊥ACD

Rt△ABD中,(海里),

Rt△BCD中,(海里).

答:此時(shí)漁船C與海監(jiān)船B的距離是海里.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的直徑CD2,弧AC的度數(shù)為80°,點(diǎn)B是弧AC的中點(diǎn),點(diǎn)P在直徑CD上移動(dòng),則BP+AP的最小值為(

A. 1B. 2C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營(yíng)銷考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷售過(guò)程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時(shí),銷售量為36本;當(dāng)銷售單價(jià)為24元時(shí),銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當(dāng)文具店每周銷售這種紀(jì)念冊(cè)獲得150元的利潤(rùn)時(shí),每本紀(jì)念冊(cè)的銷售單價(jià)是多少元?

(3)設(shè)該文具店每周銷售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】食品安全受到全社會(huì)的廣泛關(guān)注,濟(jì)南市某中學(xué)對(duì)部分學(xué)生就食品安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩份尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題.

1)接受問(wèn)卷調(diào)查的學(xué)生共有_____人,扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為_____.

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.

3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)食品安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù).

4)若從對(duì)食品安全知識(shí)達(dá)到了解程度的2個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加食品安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.

【答案】160;90°;(2)補(bǔ)圖見(jiàn)解析;(3300;(4

【解析】分析:(1)根據(jù)了解很少的人數(shù)除以了解很少的人數(shù)所占的百分百求出抽查的總?cè)藬?shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對(duì)應(yīng)扇形的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補(bǔ)全統(tǒng)計(jì)圖;(3)用總?cè)藬?shù)乘以了解基本了解程度的人數(shù)所占的比例,即可求出達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)(4)根據(jù)題意列出表格,再根據(jù)概率公式即可得出答案.

詳解:(160;90°.

2)補(bǔ)全的條形統(tǒng)計(jì)圖如圖所示.

3)對(duì)食品安全知識(shí)達(dá)到了解基本了解的學(xué)生所占比例為,由樣本估計(jì)總體,該中學(xué)學(xué)生中對(duì)食品安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù)為.

4)列表法如表所示,

男生女生

男生

男生

女生

女生

男生

男生男生

男生女生

男生女生

男生

男生男生

男生女生

男生女生

女生

男生女生

男生女生

女生女生

女生

男生女生

女生女生

所有等可能的情況一共12種,其中選中1個(gè)男生和1個(gè)女生的情況有8種,所以恰好選中1個(gè)男生和1個(gè)女生的概率是.

點(diǎn)睛:本題考查了條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖以及用列表法或樹(shù)狀圖法求概率,根據(jù)題意求出總?cè)藬?shù)是解題的關(guān)鍵;注意運(yùn)用概率公式:概率=所求情況數(shù)與總情況數(shù)之比.

型】解答
結(jié)束】
24

【題目】為響應(yīng)國(guó)家全民閱讀的號(hào)召,某社區(qū)鼓勵(lì)居民到社區(qū)閱覽室借閱讀書(shū),并統(tǒng)計(jì)每年的借閱人數(shù)和圖書(shū)借閱總量(單位:本),該閱覽室在2015年圖書(shū)借閱總量是7500本,2017年圖書(shū)借閱總量是10800.

1)求該社區(qū)的圖書(shū)借閱總量從2015年至2017年的年平均增長(zhǎng)率.

2)已知2017年該社區(qū)居民借閱圖書(shū)人數(shù)有1350人,預(yù)計(jì)2018年達(dá)到1440人,如果2017年至2018年圖書(shū)借閱總量的增長(zhǎng)率不低于2015年至2017年的年平均增長(zhǎng)率,設(shè)2018年的人均借閱量比2017年增長(zhǎng)a%,求a的值至少是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn) A ( 3 , 3) ,把直線 OA 向下平移后,與反比例函數(shù)的圖象交于點(diǎn)B(6,m),與x軸、y軸分別交于C、D兩點(diǎn).

(1)求 m的值;

( 2 )求過(guò) A、B、D 三點(diǎn)的拋物線的解析式;

( 3 )若點(diǎn)E是拋物線上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn) E,使四邊形 OECD 的面積S1,是四邊形OACD 面積S?若存在,求點(diǎn) E 的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在以點(diǎn)O為圓心的半圓中,AB為直徑,且AB=4,將該半圓折疊,使點(diǎn)A和點(diǎn)B落在點(diǎn)O處,折痕分別為ECFD,則圖中陰影部分面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,以AC為直徑作⊙OBC于點(diǎn)D,交AB于點(diǎn)G,且DBC中點(diǎn),DEAB,垂足為E,交AC的延長(zhǎng)線于點(diǎn)F.

(1)求證:直線EF是⊙O的切線;

(2)若CF=3,cosA=0.4,求出⊙O的半徑和BE的長(zhǎng);

(3)連接CG,在(2)的條件下,求CG:EF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,BD、CE是角平分線,AMBD于點(diǎn)M,ANCE于點(diǎn)N.△ABC的周長(zhǎng)為30,BC12.則MN的長(zhǎng)是( )

A. 15B. 9C. 6D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線Ly=﹣x2+bx+c經(jīng)過(guò)坐標(biāo)原點(diǎn),與它的對(duì)稱軸直線x2交于A點(diǎn).

1)直接寫(xiě)出拋物線的解析式;

2)⊙Ax軸相切,交y軸于B、C點(diǎn),交拋物線L的對(duì)稱軸于D點(diǎn),恒過(guò)定點(diǎn)的直線ykx2k+8k0)與拋物線L交于M、N點(diǎn),AMN的面積等于2,試求:

①弧BC的長(zhǎng);

k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案