(5-&函數(shù)的綜合與創(chuàng)新·2013東營(yíng)中考)若定義:, 例如,,=(     )

A.            B.           C.            D.

B.解析:由題意得f(2,3)=(-2,-3),所以g(f(2,-3))=g(-2,-3)=(-2,3),故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,點(diǎn)P從原點(diǎn)O出發(fā),沿x軸向右以毎秒1個(gè)單位長(zhǎng)精英家教網(wǎng)的速度運(yùn)動(dòng)t秒(t>0),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)O和點(diǎn)P,已知矩形ABCD的三個(gè)頂點(diǎn)為 A (1,0),B (1,-5),D (4,0).
(1)求c,b (用含t的代數(shù)式表示):
(2)當(dāng)4<t<5時(shí),設(shè)拋物線分別與線段AB,CD交于點(diǎn)M,N.
①在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,你認(rèn)為∠AMP的大小是否會(huì)變化?若變化,說(shuō)明理由;若不變,求出∠AMP的值;
②求△MPN的面積S與t的函數(shù)關(guān)系式,并求t為何值時(shí),S=
218

(3)在矩形ABCD的內(nèi)部(不含邊界),把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“好點(diǎn)”.若拋物線將這些“好點(diǎn)”分成數(shù)量相等的兩部分,請(qǐng)直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,開口向上的拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-6,0),另一個(gè)交點(diǎn)是B,與y軸的交點(diǎn)是C,且拋物線的頂點(diǎn)的縱坐標(biāo)是-2,△AOC的面積為6
3

(1)求點(diǎn)B、C的坐標(biāo);
(2)求拋物線的解析式;
(3)M點(diǎn)從點(diǎn)A出發(fā)向點(diǎn)C以每秒
3
2
個(gè)單位勻速運(yùn)動(dòng).同時(shí)點(diǎn)P以每秒2個(gè)單位的速度從A點(diǎn)出發(fā),沿折線AB、BC向點(diǎn)C勻速運(yùn)動(dòng),在運(yùn)動(dòng)的過(guò)程中,設(shè)△AMP的面積為y,運(yùn)動(dòng)的時(shí)間為x,求y與x的函數(shù)關(guān)系式及y的最大值;
(4)在運(yùn)動(dòng)的過(guò)程中,過(guò)點(diǎn)M作MN∥x軸交BC邊于N,試問(wèn),在x軸上是否存在點(diǎn)Q,使△MNQ為直角三角形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,一條直線l與x軸相交于點(diǎn)A(2,0),與正比例函數(shù)y=kx(k≠0,且k為常數(shù))的圖象相交于點(diǎn)P(1,1).
(1)求k的值;
(2)求△AOP的面積.
(3)在x軸找一點(diǎn)M,使三角形AMP是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在?ABCD中,AC⊥BC,AC=BC=2,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AC向終點(diǎn)C移動(dòng),過(guò)點(diǎn)P分別作PM∥AB,PN∥AD,連結(jié)AM,設(shè)AP=x,△AMP的面積為y.
(1)四邊形PMCN是不是菱形,請(qǐng)說(shuō)明理由.
(2)寫出y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案