【題目】填寫推理理由

如圖,已知ADBCD,EFBCF,AD平分∠BAC.將∠E=1的過程填寫完整.

解:解:∵ADBC, EFBC( 已知

∴∠ADC=EFC= 90°( 垂直的意義

AD//EF

∴∠1=

E=

又∵AD平分∠BAC(已知

=

∴∠1=E.

【答案】見解析

【解析】

試題由AD垂直于BC,EF垂直于BC,得到一對同位角相等,利用同位角相等兩直線平行得到ADEF平行,利用兩直線平行內(nèi)錯角相等得到一對角相等,再由AD為角平分線得到一對角相等,等量代換即可得證.

試題解析:∵AD⊥BC,EF⊥BC(已知)

∴∠ADC=∠EFC=90°(垂直的意義)

∴AD∥EF

∴∠1=∠BAD(兩直線平行,內(nèi)錯角相等)

∴∠E=∠CAD(兩直線平行,同位角相等)

∵AD平分∠BAC(已知)

∴∠BAD=∠CAD

∴∠1=∠E

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】定義一種新運算⊙:1⊙3=1×4+3=7; 3⊙(-1)=3×4-1=11;(-5)⊙4=(-5)×4+4=-16; (-4)⊙(-3)=(-4)×4-3=-19.

(1)由以上式子可知:a⊙b= ;

(2)若a⊙(-2b)=4,請計算(a-b)⊙(2a+b)的值;

(3)若[x⊙(-2)] ⊙ [(-x)⊙2]=6,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0),B(5,0)兩點,直線y=﹣ x+3與y軸交于點C,與x軸交于點D.點P是x軸上方的拋物線上一動點,過點P作PF⊥x軸于點F,交直線CD于點E.設點P的橫坐標為m.

(1)求拋物線的解析式;
(2)若PE=5EF,求m的值;
(3)若點E′是點E關于直線PC的對稱點,是否存在點P,使點E′落在y軸上?若存在,請直接寫出相應的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校測量了九年級(1)班學生的身高(精確到1cm),按10cm為一段進行分組,得到如下頻數(shù)分布直方圖如圖,則下列說法不正確的是(  )

A. 該班人數(shù)最多的身高段的學生數(shù)為20人

B. 該班身高低于160.5 cm的學生數(shù)為20人

C. 該班身高最高段的學生數(shù)為20人

D. 該班身高最高段的學生數(shù)為7人

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】體育委員統(tǒng)計了全班同學60秒跳繩的次數(shù),并列出下列人數(shù)次數(shù)分布表,回答下列問題:

次數(shù)x

人數(shù)

60≤x80

2

80≤x100

5

100≤x120

21

120≤x140

13

140≤x160

8

160≤x180

4

(1)全班有多少人?

(2)組距、組數(shù)是多少?

(3)跳繩次數(shù)在100≤x140范圍內(nèi)同學有多少人,占全班的百分之幾(精確到0.01%)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P、Q是邊長為2的菱形ABCD中兩邊BCCD的中點,KBD上一動點,則KP+KQ的最小值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊ABC中,DBC邊的中點,以AD為邊作等邊ADE.

(1)求∠CAE的度數(shù);

(2)AB邊的中點F,連接CF、CE,試說明四邊形AFCE是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點,連接AE、BE,BEAE,延長AEBC的延長線于點F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面給出的五個結(jié)論中:

①最大的負整數(shù)是-1;②數(shù)軸上表示數(shù)3-3的點到原點的距離相等;

③當a≤0時,|a|=-a成立;④若a2=9,則a一定等于3;

一定是正數(shù).說法正確的有_________________

查看答案和解析>>

同步練習冊答案