【題目】圖中所示的拋物線形拱橋,當(dāng)拱頂離水面4m時(shí),水面寬8m.水面上升3米,水面寬度減少多少?下面給出了解決這個(gè)問(wèn)題的兩種建系方法.

方法一如圖1,以上升前的水面所在直線與拋物線左側(cè)交點(diǎn)為原點(diǎn),以上升前的水面所在直線為x軸,建立平面直角坐標(biāo)系xOy;

方法二如圖2,以拋物線頂點(diǎn)為原點(diǎn),以拋物線的對(duì)稱軸為y軸,建立平面直角坐標(biāo)系xOy

【答案】4m

【解析】

方法一:根據(jù)頂點(diǎn)坐標(biāo)為(4,4),設(shè)其解析式為yax42+4,將(0,0)代入求出a的值即可得;

方法二:設(shè)拋物線解析式為yax2,將點(diǎn)(4,﹣4)代入求得a的值,據(jù)此可得拋物線的解析式,再求出上漲3m后,即y=﹣1時(shí)x的值即可得.

解:方法一、根據(jù)題意知,拋物線與x軸的交點(diǎn)為(0,0)、(8,0),其頂點(diǎn)坐標(biāo)為(4,4),

設(shè)解析式為yax42+4,

將點(diǎn)(0,0)代入,得:16a+40,

解得:a=﹣,

則拋物線解析式為y=﹣x42+4=﹣x2+2x,

當(dāng)y3時(shí),﹣x2+2x3,

解得:x2x6

則水面的寬減少了8﹣(62)=4m).

方法二:由題意知,拋物線過(guò)點(diǎn)(4,﹣4),

設(shè)拋物線解析式為yax2,

將點(diǎn)(4,﹣4)代入,得:16a=﹣4

解得:a=﹣,

所以拋物線解析式為y=﹣x2,

當(dāng)y=﹣1時(shí),﹣x2=﹣1,

解得:x2x=﹣2

則水面的寬減少了844m).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線交于BC兩點(diǎn).

1)求拋物線的解析式及點(diǎn)C的坐標(biāo);

2)求△ABC的面積;

3)若點(diǎn)Nx軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)NMNx軸與拋物線交于點(diǎn)M,則是否存在以OM,N為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,矩形OABC的頂點(diǎn)A的坐標(biāo)為(4,0),O為坐標(biāo)原點(diǎn),點(diǎn)B在第一象限,連接AC tan∠ACO=2,DBC的中點(diǎn),

1)求點(diǎn)D的坐標(biāo);

2)如圖2,M是線段OC上的點(diǎn),OM=OC,點(diǎn)P是線段OM上的一個(gè)動(dòng)點(diǎn),經(jīng)過(guò)P、DB三點(diǎn)的拋物線交 軸的正半軸于點(diǎn)E,連接DEAB于點(diǎn)F.

△DBF沿DE所在的直線翻折,若點(diǎn)B恰好落在AC上,求此時(shí)點(diǎn)P的坐標(biāo);

以線段DF為邊,在DF所在直線的右上方作等邊△DFG,當(dāng)動(dòng)點(diǎn)P從點(diǎn)O運(yùn)動(dòng)到點(diǎn)M時(shí),點(diǎn)G也隨之運(yùn)動(dòng),請(qǐng)直接寫(xiě)出點(diǎn)G運(yùn)動(dòng)的路徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,ABAC,以AB為直徑的⊙OBC于點(diǎn)D,過(guò)點(diǎn)DDEAC于點(diǎn)E

1)求證:DE是⊙O的切線.

2)若⊙O的半徑為3cm,∠C30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+cx軸分別于點(diǎn)A(﹣3,0),B1,0),交y軸正半軸于點(diǎn)D,拋物線頂點(diǎn)為C.下列結(jié)論:①2ab0;②a+b+c0;③abam2+bm;④當(dāng)△ABC是等腰直角三角形時(shí),a=﹣0.5;⑤若D0,3),則拋物線的對(duì)稱軸直線x=﹣1上的動(dòng)點(diǎn)PB、D兩點(diǎn)圍成的△PBD周長(zhǎng)最小值為.其中,正確的個(gè)數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,二次函數(shù)yax2+bx+c的圖象開(kāi)口向上,且對(duì)稱軸在(﹣1,0)的左邊,下列結(jié)論一定正確的是( 。

A.abc0B.2ab0C.b24ac0D.ab+c>﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了美化校園環(huán)境,向園林公司購(gòu)買一批樹(shù)苗.公司規(guī)定:若購(gòu)買樹(shù)苗不超過(guò)60棵,則每棵樹(shù)售價(jià)120元;若購(gòu)買樹(shù)苗超過(guò)60棵,則每增加1棵,每棵樹(shù)售價(jià)均降低0.5元,且每棵樹(shù)苗的售價(jià)降到100元后,不管購(gòu)買多少棵樹(shù)苗,每棵售價(jià)均為100.

1)若該學(xué)校購(gòu)買50棵樹(shù)苗,求這所學(xué)校需向園林公司支付的樹(shù)苗款;

2)若該學(xué)校向園林公司支付樹(shù)苗款8800元,求這所學(xué)校購(gòu)買了多少棵樹(shù)苗.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1,點(diǎn)B(﹣9,10,AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).

(1求拋物線的解析式;(2過(guò)點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】溫州某企業(yè)安排名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)件甲或件乙,甲產(chǎn)品每件可獲利.根據(jù)市場(chǎng)需求和生產(chǎn)經(jīng)驗(yàn),乙產(chǎn)品每天產(chǎn)量不少于件,當(dāng)每天生產(chǎn)件時(shí),每件可獲利元, 每增加件,當(dāng)天平均每件利潤(rùn)減少.設(shè)每天安排人生產(chǎn)乙產(chǎn)品.

根據(jù)信息填表:

產(chǎn)品種類

每天工人數(shù)()

每天產(chǎn)量()

每件產(chǎn)品可獲利潤(rùn)()

__________

_____________

_____________

若每天生產(chǎn)甲產(chǎn)品可獲得的利潤(rùn)比生產(chǎn)乙產(chǎn)品可獲得的利潤(rùn)多元,求每件乙產(chǎn)品可獲得的利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案