(2012•龍巖)矩形ABCD中,AD=5,AB=3,將矩形ABCD沿某直線折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A′落在線段BC上,再打開得到折痕EF.
(1)當(dāng)A′與B重合時(shí),(如圖1),EF=
5
5
;當(dāng)折痕EF過點(diǎn)D時(shí)(如圖2),求線段EF的長;
(2)觀察圖3和圖4,設(shè)BA′=x,①當(dāng)x的取值范圍是
3≤x≤5
3≤x≤5
時(shí),四邊形AEA′F是菱形;②在①的條件下,利用圖4證明四邊形AEA′F是菱形.
分析:(1)由于矩形對(duì)折,于是EF=AD=5;根據(jù)折疊的性質(zhì)得到DC=AB=3,A′F=AD=5,在Rt△A′CF中利用勾股定理可計(jì)算出A′C=4,設(shè)AE=t,則BE=3-t,EA′=t,在Rt△EBA′中,利用勾股定理得(3-t)2+12=t2,解得t=
5
3
,然后在RtAEF中,利用勾股定理即可計(jì)算出EF;
(2)①當(dāng)折痕FE過B點(diǎn)時(shí),四邊形AEA′F是正方形,BA′最小,此時(shí)BA′=BA=3;當(dāng)點(diǎn)A的對(duì)應(yīng)點(diǎn)A′落在C點(diǎn)時(shí),BA′=5,于是得到x的取值范圍是3≤x≤5,四邊形AEA′F是菱形;
②根據(jù)折疊的性質(zhì)得到EA=EA′,F(xiàn)A=FA′,∠AEF=∠A′EF,根據(jù)平行線的性質(zhì)可得∠A′EF=∠AFE,則有∠A′FE=∠A′EF,于是A′E=A′F,易得AE=EA′=A′F=FA,根據(jù)菱形的判定即可得到結(jié)論.
解答:解:(1)當(dāng)A′與B重合時(shí),如圖1,把矩形對(duì)折,所以EF=AD=5.
故答案為5;
如圖2,DC=AB=3,A′F=AD=5,
在Rt△A′CF中,A′C=
A′F2-FC2
=4,
設(shè)AE=t,則BE=3-t,EA′=t,
在Rt△EBA′中,BA′=BC-A′C=5-4=1,
∵BE2+BA′2=EA′2,
∴(3-t)2+12=t2,解得t=
5
3
,
在RtAEF中,AE=
5
3
,AF=5,
∴EF=
(
5
3
)2+52
=
5
10
3
;

(2)①3≤x≤5;
②如圖4,∵△AEF沿EF折疊到△A′EF,
∴EA=EA′,F(xiàn)A=FA′,∠AEF=∠A′EF,
∵四邊形ABCD為矩形,
∴AF∥EC,
∴∠A′EF=∠AFE,
∴∠A′FE=∠A′EF,
∴A′E=A′F,
∴AE=EA′=A′F=FA,
∴四邊形AEA′F是菱形.
點(diǎn)評(píng):本題考查了折疊的性質(zhì):折疊前后兩圖形全等,折痕垂直平分對(duì)應(yīng)點(diǎn)的連線段.也考查了矩形的性質(zhì)、勾股定理以及菱形的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•龍巖質(zhì)檢)觀察、猜想、探究
已知矩形ABCD中,直線l垂直AC于點(diǎn)C,點(diǎn)E是BC上的動(dòng)點(diǎn)(不與點(diǎn)C重合),過點(diǎn)E作EF⊥AE交直線l于點(diǎn)F.
(1)如圖①,當(dāng)AB=BC,E為BC中點(diǎn)時(shí),猜想線段AE與FE有何數(shù)量關(guān)系,并證明你的猜想;
(2)如圖②,已知AB=3,AD=4.
①當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),求AE:EF的值;
②探究:當(dāng)點(diǎn)E在線段BC上運(yùn)動(dòng)時(shí),AE:EF的值是否發(fā)生改變?若不變,請求出該值并給予證明;若發(fā)生改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•龍巖)如圖,矩形ABCD中,AB=1,BC=2,把矩形ABCD繞AB所在直線旋轉(zhuǎn)一周所得圓柱的側(cè)面積為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•龍巖)如圖,Rt△ABC中,∠C=90°,AC=BC=6,E是斜邊AB上任意一點(diǎn),作EF⊥AC于F,EG⊥BC于G,則矩形CFEG的周長是
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•龍巖)如圖1,過△ABC的頂點(diǎn)A作高AD,將點(diǎn)A折疊到點(diǎn)D(如圖2),這時(shí)EF為折痕,且△BED和△CFD都是等腰三角形,再將△BED和△CFD沿它們各自的對(duì)稱軸EH、FG折疊,使B、C兩點(diǎn)都與點(diǎn)D重合,得到一個(gè)矩形EFGH(如圖3),我們稱矩形EFGH為△ABC的邊BC上的折合矩形.
(1)若△ABC的面積為6,則折合矩形EFGH的面積為
3
3
;
(2)如圖4,已知△ABC,在圖4中畫出△ABC的邊BC上的折合矩形EFGH;
(3)如果△ABC的邊BC上的折合矩形EFGH是正方形,且BC=2a,那么,BC邊上的高AD=
2a
2a
,正方形EFGH的對(duì)角線長為
2
a
2
a

查看答案和解析>>

同步練習(xí)冊答案