【題目】(閱讀)如圖1,四邊形中,,,,經(jīng)過點的直線將四邊形分成兩部分,直線所成的角設為,將四邊形的直角沿直線折疊,點落在點處,我們把這個操作過程記為

(理解)若點與點重合,則這個操作過程為[__________,__________];

         

(嘗試)

1)若點恰為的中點(如圖2),求;

2)經(jīng)過操作,點落在處,若點在四邊形的邊(如圖3),求出的值.

【答案】;(130°;(25

【解析】

由題目條件可知,當點與點重合時,=45°,,即可得到結(jié)論;

1)見詳解中圖2,延長NDOA的延長線于M ,根據(jù)折疊性質(zhì)得,由點DAB的中點得到D點為MN的中點,所以OD垂直平分MN,則,根據(jù)等腰三角形的性質(zhì)得,則,計算得到;

2)見詳解中圖3,作EH⊥OAH,根據(jù)折疊性質(zhì)得AB⊥直線l,由于,AB⊥直線l,即直線l平分∠AOC,則∠A=45°,所以△AHE為等腰直角三角形,則,所以,即

理解:由題目條件可知,當點與點重合時,=45°,,所以;

1)如圖2,延長NDOA的延長線于M

四邊形OABC的直角∠OCB沿直線l折疊,點C落在點D處,

,,

DAB的中點,

∴D點為MN的中點,

∴OD垂直平分MN,

,

,

;

(2)如圖3,作ED⊥OAD,

∵四邊形OABC的直角∠OCB沿直線l折疊后,點B落在點四邊形OABC的邊AB上的E處,

AB⊥直線l,,

,AB⊥直線l

即直線l平分∠AOC,

∴∠A=45°,

∴△ADE為等腰直角三角形,

,

故答案為: ;(130°;(25

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校組織一項公益知識競賽,比賽規(guī)定:每個班級由2名男生、2名女生及1名班主任老師組成代表隊.但參賽時,每班只能有3名隊員上場參賽,班主任老師必須參加,另外2名隊員分別在2名男生和2名女生中各隨機抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊,求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請用畫樹狀圖列表列舉等方法給出分析過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某店只銷售某種進價為40/kg的產(chǎn)品,已知該店按60kg出售時,每天可售出100kg,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低1元,則每天的銷售量可增加10kg.

(1)若單價降低2元,則每天的銷售量是_____千克,每天的利潤為_____元;若單價降低x元,則每天的銷售量是_____千克,每天的利潤為______元;(用含x的代數(shù)式表示)

(2)若該店銷售這種產(chǎn)品計劃每天獲利2240元,單價應降價多少元?

(3)當單價降低多少元時,該店每天的利潤最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AD是角平分錢,點E在AC上,且EAD=ADE.

1求證:DCE∽△BCA;

2若AB=3,AC=4.求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB、AC與⊙O相切于點B、C,∠A=50°,P為⊙O上異于B、C的一個動點,則∠BPC的度數(shù)為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠CAB70°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AB'C'的位置,使得CCAB,則∠CAB'等于(  )

A. 30°B. 25°C. 15°D. 10°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司欲招聘一名部門經(jīng)理,對甲、乙、丙三名候選人進行了三項素質(zhì)測試.各項測試成績?nèi)绫砀袼荆?/span>

測試項目

測試成績

專業(yè)知識

74

87

90

語言能力

58

74

70

綜合素質(zhì)

87

43

50

(1)如果根據(jù)三次測試的平均成績確定人選,那么誰將被錄用?

(2)根據(jù)實際需要,公司將專業(yè)知識、語言能力和綜合素質(zhì)三項測試得分按4:3:1的比例確定每個人的測試總成績,此時誰將被錄用?

(3)請重新設計專業(yè)知識、語言能力和綜合素質(zhì)三項測試得分的比例來確定每個人的測試總成績,使得乙被錄用,若重新設計的比例為xy:1,且x+y+1=10,則x   ,y   .(寫出xy的一組整數(shù)值即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形中,,分別是邊上的點,交于點

1)如圖1,若四邊形是正方形,且,求證:;

2)如圖2,若四邊形是菱形,試探究當滿足什么關(guān)系,使得;

3)如圖3,,,,試判斷的數(shù)量關(guān)系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,矩形中,,的垂直平分線分別交于點,垂足為

1)如圖1,連接,求證:四邊形為菱形;

2)如圖2,動點分別從兩點同時出發(fā),沿各邊勻速運動一周,即點停止,點停止.在運動過程中,

①已知點的速度為每秒,點的速度為每秒,運動時間為秒,當四點為頂點的四邊形是平行四邊形時,則____________

②若點的運動路程分別為 (單位:),已知四點為頂點的四邊形是平行四邊形,則滿足的數(shù)量關(guān)系式為____________

查看答案和解析>>

同步練習冊答案