【題目】如圖,的直角邊上一點(diǎn),以為半徑的與斜邊相切于點(diǎn),交于點(diǎn).已知,

(1)求的長;

(2)求圖中陰影部分的面積.

【答案】(1)(2)

【解析】

試題分析:(1)在RtABC中,利用勾股定理求出AB的長,然后根據(jù)切線的判定證出BC為切線,然后可根據(jù)切線長定理可求解;

(2)在RtABC中,根據(jù)A的正弦求出A的度數(shù),然后根據(jù)切線的性質(zhì)求出OD的長,和扇形圓心角的度數(shù),再根據(jù)扇形的面積公式可求解.

試題解析:(1)在RtABC中,AB===2

∵BC⊥OC

∴BC是O的切線

∵AB是O的切線

∴BD=BC=

∴AD=AB-BD=

(2)在RtABC中,sinA=

∴∠A=30°

∵AB切O于點(diǎn)D

∴OD⊥AB

∴∠AOD=90°-∠A=60°

∴OD=1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣1,0),點(diǎn)B(0,).

(1)求BAO的度數(shù);

(2)如圖1,將AOB繞點(diǎn)O順時針得A′OB′,當(dāng)A′恰好落在AB邊上時,設(shè)AB′O的面積為S1,BA′O的面積為S2,S1與S2有何關(guān)系?為什么?

(3)若將AOB繞點(diǎn)O順時針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請你寫出一個只含有字母m、n,且它的系數(shù)為﹣2、次數(shù)為3的單項(xiàng)式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直徑,相切于點(diǎn),延長線.

(1)求證

(2)若,半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢,一次性收購了淡水魚,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng)天的總成本為萬元;放養(yǎng)天的總成本為萬元(總成本=放養(yǎng)總費(fèi)用+收購成本).

(1)設(shè)每天的放養(yǎng)費(fèi)用是萬元,收購成本為萬元,求的值;

(2)設(shè)這批淡水魚放養(yǎng)天后的質(zhì)量為),銷售單價為元/.根據(jù)以往經(jīng)驗(yàn)可知:的函數(shù)關(guān)系為;的函數(shù)關(guān)系如圖所示.

分別求出當(dāng)時,的函數(shù)關(guān)系式;

設(shè)將這批淡水魚放養(yǎng)天后一次性出售所得利潤為元,求當(dāng)為何值時,最大?并求出最大值.(利潤=銷售總額-總成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB∥CD,BE⊥AD于點(diǎn)E,CF⊥AD于點(diǎn)F,且AF=DE,求證:四邊形BECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天義地區(qū)某天的最高氣溫是8℃,最低氣溫是﹣2℃,則該地這一天的溫差是(
A.10℃
B.﹣6℃
C.6℃
D.﹣10℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD是正方形,點(diǎn)P,Q在直線BC上,且AP∥DQ,過點(diǎn)Q作QO⊥BD,垂足為點(diǎn)O,連接OA,OP.

(1)如圖,點(diǎn)P在線段BC上,
①求證:四邊形APQD是平行四邊形;
②判斷OA,OP之間的數(shù)量關(guān)系和位置關(guān)系,并加以證明;
(2)若正方形ABCD的邊長為2,直接寫出BP=1時,△OBP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(x,y)在第一象限內(nèi),且x+y=6,點(diǎn)A的坐標(biāo)為(4,0).設(shè)△OPA的面積為S,則下列圖象中,能正確反映面積S與x之間的函數(shù)關(guān)系式的圖象是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案