圖1是一個長為2a,寬為2b的長方形,沿圖中虛線剪開,可分成四塊小長方形.
(1)你認為圖1的長方形面積等于
4ab
4ab

(2)將四塊小長方形拼成一個圖2的正方形.請用兩種不同的方法求圖2中 陰影部分的面積.           
方法1:
(a+b)2-4ab
(a+b)2-4ab
;方法2:
(a-b)2
(a-b)2
;
(3)觀察圖2直接寫出代數(shù)式(a+b)2、(a-b)2、ab之間的等量關(guān)系
(a+b)2-4ab=(a-b)2
(a+b)2-4ab=(a-b)2
;
(4)把四塊小長方形不重疊地放在一個長方形的內(nèi)部(如圖3),未被覆蓋的部分用陰影表示.求兩塊陰影部分的周長和(用含m、n的代數(shù)式表示).
分析:(1)根據(jù)長方形的面積公式計算圖1的長方形面積;
(2)圖2中陰影部分的面積可用邊長為(a+b)的正方形的面積減去4個小長方形的面積;圖2中陰影部分本身就是邊長為(a-b)的正方形,可利用正方形面積公式直接計算;
(3)利用(2)中陰影部分的面積兩種計算方法的結(jié)果相等即可得到所求的等量關(guān)系;
(4)根據(jù)圖形分別表示出兩塊陰影部分的邊長,然后計算周長.
解答:解:(1)長方形面積=2a•2b=4ab;
(2)方法1:S陰影部分=(a+b)2-4ab;
方法2:S陰影部分=(a-b)2;
(3)根陰影部分的面相等得到(a+b)2-4ab=(a-b)2;
(4)兩塊陰影部分的周長和=2a+2(n-2b)+2×2b+2(n-a)=4n.
故答案為4ab;(a+b)2-4ab;S陰影部分=(a-b)2
點評:本題考查了完全平方公式的幾何背景:運用幾何直觀理解、解決完全平方公式的推導過程,通過幾何圖形之間的數(shù)量關(guān)系對完全平方公式做出幾何解釋.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

24、如圖1是一個長為2a、寬為2b的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖2形狀拼成一個正方形.
(1)圖2中的空白部分的正方形的邊長是多少?(用含a、b的式子表示)
(2)已知a+b=7,ab=6,求圖2中空白部分的正方形的面積.
(3)觀察圖2,用一個等式表示下列三個整式:(a+b)2,(a-b)2,ab之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

圖1是一個長為2a,寬為2b的長方形,沿圖中虛線剪開,可分成四塊小長方形.
(1)求出圖1的長方形面積;
(2)將四塊小長方形拼成一個圖2的正方形.利用陰影部分面積的不同表示方法,直接寫出代數(shù)式(a+b)2、(a-b)2、ab之間的等量關(guān)系;
(3)把四塊小長方形不重疊地放在一個長方形的內(nèi)部(如圖3),未被覆蓋的部分用陰影表示.求兩塊陰影部分的周長和(用含m、n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1是一個長為2a,寬為2b的長方形,沿圖中虛線剪開分成四塊小長方形,然后按如圖2的形狀拼成一個正方形.
(1)圖2的陰影部分的正方形的邊長是
a-b
a-b

(2)用兩種不同的方法求圖中陰影部分的面積.
【方法1】S陰影=
(a-b)2
(a-b)2
;
【方法2】S陰影=
(a+b)2-4ab
(a+b)2-4ab

(3)觀察如圖2,寫出(a+b)2,(a-b)2,ab這三個代數(shù)式之間的等量關(guān)系.
(4)根據(jù)(3)題中的等量關(guān)系,解決問題:
若x+y=10,xy=16,求x-y的值.

查看答案和解析>>

科目:初中數(shù)學 來源:江西省期末題 題型:解答題

如圖1是一個長為2a、寬為2b的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖2形狀拼成一個正方形.
(1)圖2中的空白部分的正方形的邊長是多少?(用含a、b的式子表示)
(2)已知a+b=7,ab=6,求圖2中空白部分的正方形的面積.
(3)觀察圖2,用一個等式表示下列三個整式:(a+b)2,(a﹣b)2,ab之間的數(shù)量關(guān)系.
                                                  
                                                   圖1                                                圖2

查看答案和解析>>

同步練習冊答案