【題目】如圖,AB是⊙O的弦,過B作BC⊥AB交⊙O于點C,過C作⊙O的切線交AB的延長線于點D,取AD的中點E,過E作EF∥BC交DC 的延長線與點F,連接AF并延長交BC的延長線于點G.
求證:(1)FC=FG (2)=BCCG.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
試題分析:(1)由平行線的性質得出EF⊥AD,由線段垂直平分線的性質得出FA=FD,由等腰三角形的性質得出∠FAD=∠D,證出∠DCB=∠G,由對頂角相等得出∠GCF=∠G,即可得出結論;
(2)連接AC,由圓周角定理證出AC是⊙O的直徑,由弦切角定理得出∠DCB=∠CAB,證出∠CAB=∠G,再由∠CBA=∠GBA=90°,證明△ABC∽△GBA,得出對應邊成比例,即可得出結論.
試題解析:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中點,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;
(2)連接AC,如圖所示:
∵AB⊥BG,∴AC是⊙O的直徑,∵FD是⊙O的切線,切點為C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴,∴=BCBG.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,下列能判定AB∥CD的條件有( )個.
(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y是x 的函數(shù),自變量x的取值范圍是x >0,下表是y與x 的幾組對應值.
x | ··· | 1 | 2 | 3 | 5 | 7 | 9 | ··· |
y | ··· | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | ··· |
小騰根據(jù)學習一次函數(shù)的經(jīng)驗,利用上述表格所反映出的y與x之間的變化規(guī)律,對該函數(shù)的圖象與性質進行了探究.
下面是小騰的探究過程,請補充完整:
(1)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;
(2)根據(jù)畫出的函數(shù)圖象,寫出:
①x=4對應的函數(shù)值y約為________;
②該函數(shù)的一條性質:__________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,⊙O是△ABC的外接圓,,點D在邊BC上,AE∥BC,AE=BD.
(1)求證:AD=CE;
(2)如果點G在線段DC上(不與點D重合),且AG=AD,求證:四邊形AGCE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拖拉機開始工作時,油箱中有油30L,每小時耗油5L.
(1)寫出油箱中的剩余測量Q(L)與工作時間t(h)之間的函數(shù)表達式,并求出自變量t的取值范圍;
(2)當拖拉機工作4h時,油箱內(nèi)還剩余油多少升?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com