【題目】如圖,AB是半圓O的直徑,D,E是半圓上任意兩點,連結(jié)AD,DE,AE與BD相交于點C,要使△ADC與△ABD相似,可以添加一個條件.下列添加的條件其中錯誤的是( 。
A.B.C.D.
【答案】D
【解析】
利用有兩組角對應(yīng)相等的兩個三角形相似可對A進(jìn)行判定;先利用等腰三角形的性質(zhì)和圓周角定理得到∠DAC=∠B,然后利用有兩組角對應(yīng)相等的兩個三角形相似可對B進(jìn)行判定;利用兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似可對C、D進(jìn)行判定.
解:A、因為∠ADC=∠BDA,∠ACD=∠DAB,所以△DAC∽△DBA,所以A選項添加的條件正確;
B、由AD=DE得∠DAC=∠E,而∠B=∠E,所以∠DAC=∠B,加上∠ADC=∠BDA,所以△DAC∽△DBA,所以B選項添加的條件正確;
C、由AD2=DBCD,即AD:DB=DC:DA,加上∠ADC=∠BDA,所以△DAC∽△DBA,所以C選項添加的條件正確;
D、由ADAB=ACBD得,而不能確定∠ABD=∠DAC,即不能確定點D為弧AE的中點,所以不能判定△DAC∽△DBA,所以D選項添加的條件錯誤.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.
(1)求該拋物線的解析式;
(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標(biāo);若不存在,請說明理由;
(3)當(dāng)0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雙曲線(k為常數(shù),且)與直線交于兩點.
(1)求k與b的值;
(2)如圖,直線AB交x軸于點C,交y軸于點D,若點E為CD的中點,求△BOE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩所學(xué)校的學(xué)生都參加了某次體育測試,成績均為7﹣10分,且為整數(shù).亮亮分別從這兩所學(xué)校各隨機抽取一部分學(xué)生的測試成績,共200份,并繪制了如下尚不完整的統(tǒng)計圖.
(1)這200份測試成績的中位數(shù)是 分,m= ;
(2)補全條形統(tǒng)計圖;扇形統(tǒng)計圖中,求成績?yōu)?/span>10分所在扇形的圓心角的度數(shù).
(3)亮亮算出了“1名A校學(xué)生的成績被抽到”的概率是,請你估計A校成績?yōu)?/span>8分的學(xué)生大約有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了慶祝中華人民共和國成立70周年,某市決定開展“我和祖國共成長”主題演講比賽,某中學(xué)將參加本校選拔賽的40名選手的成績(滿分為100分,得分為正整數(shù)且無滿分,最低為75分)分成五組,并繪制了下列不完整的統(tǒng)計圖表.
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
74.5~79.5 | 2 | 0.05 |
79.5~84.5 | m | 0.2 |
84.5~89.5 | 12 | 0.3 |
89.5~94.5 | 14 | n |
94.5~99.5 | 4 | 0.1 |
(1)表中m= ,n= ;
(2)請在圖中補全頻數(shù)直方圖;
(3)甲同學(xué)的比賽成績是40位參賽選手成績的中位數(shù),據(jù)此推測他的成績落在 分?jǐn)?shù)段內(nèi);
(4)選拔賽中,成績在94.5分以上的選手,男生和女生各2人,學(xué)校從中隨機確定2名選手參加全市決賽,恰好是一名男生和一名女生的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生的藝術(shù)特長發(fā)展情況,某校決定圍繞“在舞蹈、樂器、聲樂、戲曲、其它活動項目中,你最喜歡哪一項活動(每人只限一項)”的問題,在全校范圍內(nèi)隨機抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖解答下列問題:
(1)扇形統(tǒng)計圖中“戲曲”部分對應(yīng)的扇形的圓心角為 度;
(2)若在“舞蹈、樂器、聲樂、戲曲”項目中任選兩項成立課外興趣小組,請用列舉法求恰好選中“舞蹈、聲樂”這兩項的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點M在BA的延長線上.
(1)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(尺規(guī)作圖,保留作圖痕跡,不要求寫作法和證明);
①作∠MAC的平分線AN;
②在AN上截取AD=BC,連結(jié)CD.
(2)在(1)的條件下,判斷四邊形ABCD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動課上,陳老師布置了一道題目:如圖,你能用一張銳角三角形紙片ABC折出一個以∠A為內(nèi)角的菱形嗎?
悅悅的折法如下:
第一步,折出∠A的平分線,交BC于點D.
第二步,折出AD的垂直平分線,分別交AB、AC于點E、F,把紙片展平.
第三步,折出DE、DF,得到四邊形AE
請根據(jù)悅悅的折法在圖中畫出對應(yīng)的圖形,并證明四邊形AEDF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點D是BC邊上的一動點(不與B、C重合),∠ADE=∠B=∠α,DE交AB于點E,且tan∠α=0.75,有以下的結(jié)論:
①△DBE∽△ACD;②△ADE∽△ACD;③△BDE為直角三角形時,BD為8或3.5;
④0<BE≤5.其中正確的結(jié)論是_______(填入正確結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com