【題目】如圖,矩形ABCD中,,,把矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)D落在射線CB上的點(diǎn)P處時(shí),那么線段DP的長度等于_________.

【答案】

【解析】畫圖,分兩種情況:點(diǎn)PB的右側(cè)或左側(cè).根據(jù)旋轉(zhuǎn)和矩形性質(zhì),運(yùn)用勾股定理,分別求出BPPC,便可求出PD.

(1)如圖,當(dāng)PB的右側(cè)時(shí),由旋轉(zhuǎn)和矩形性質(zhì)得:

AP=AD=5,AB=CD=3,

在直角三角形ABP中,BP=,

所以,PC=BC-BP=5-4=1,

在直角三角形PDC中,PD=,

(2)如圖,當(dāng)點(diǎn)PB的左側(cè)時(shí),由旋轉(zhuǎn)和矩形性質(zhì)得:

AP=AD=5,AB=CD=3,

在直角三角形APB中,PB=,

所以,PC=BC+PB=5+4=9,

在在直角三角形PDC中,PD=,

所以,PD的長度為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O的半徑為4,OA為半徑,CD為弦,OACD交于點(diǎn)M,將弧CD沿著CD翻折后,點(diǎn)A與圓心O重合,延長OAP,使AP=OA,連接PC.

(1)求CD的長;

(2)求證:PCO的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展陽光體育一小時(shí)活動(dòng),根據(jù)學(xué)校實(shí)際情況,決定開設(shè)A:踢毽子;B:籃球:C:跳繩;D:乒乓球四種運(yùn)動(dòng)項(xiàng)目.為了解學(xué)生最喜歡哪一種運(yùn)動(dòng)項(xiàng)目,隨機(jī)抽取了一部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如兩個(gè)統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問題:

(1)本次共調(diào)查了多少名學(xué)生?

(2)請(qǐng)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整.

(3)求圖中“A”層次所在扇形的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一果農(nóng)販賣的西紅柿,其重量與價(jià)錢成一次函數(shù)關(guān)系.小華向果農(nóng)買一竹籃的西紅柿,含竹籃稱得總重量為15公斤,付西紅柿的錢26元,若再加買0.5公斤的西紅柿,需多付1元,則空竹籃的重量為多少?(  )

A. 1.5 B. 2 C. 2.5 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)計(jì)劃從一文體公司購買甲,乙兩種型號(hào)的小黑板,經(jīng)洽談,購買一塊甲型小黑板比購買一塊乙型小黑板多用20元,且購買2塊甲型小黑板和3塊乙型小黑板共需440元.
(1)求購買一塊甲型小黑板、一塊乙型小黑板各需多少元?
(2)根據(jù)該中學(xué)實(shí)際情況,需從文體公司購買甲,乙兩種型號(hào)的小黑板共60塊,要求購買甲,乙兩種型號(hào)小黑板的總費(fèi)用不超過5240元.并且購買甲型小黑板的數(shù)量不小于購買乙型小黑板數(shù)量的 .則該中學(xué)從文體公司購買甲,乙兩種型號(hào)的小黑板有哪幾種方案?哪種方案的總費(fèi)用最低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如題,,點(diǎn)是邊的中點(diǎn),點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),作于點(diǎn),的延長線交線段于點(diǎn).

(1)如圖①,當(dāng)點(diǎn)于點(diǎn)重合時(shí),求證:

(2)設(shè),梯形的面積為,求的函數(shù)解析式,并寫出定義域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】星期天的早晨,小明騎自行車從家出發(fā),到離家1050米的書店買書,出發(fā)1分鐘后,他到達(dá)離家150米的地方,又過1分鐘后,小明加快了速度.如圖所示是小明從家出發(fā)后離家的路程y(米)與他騎自行車的時(shí)間x(分鐘)之間的函數(shù)圖象.根據(jù)圖象解答下列問題:
(1)直接寫出點(diǎn)A的坐標(biāo),并求線段AB所在的直線的函數(shù)解析式.
(2)求小明出發(fā)多長時(shí)間后,離書店還剩210米的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,∠CAB=∠ACB,過點(diǎn)B作BE⊥AB交AC于點(diǎn)E.
(1)求證:AC⊥BD;
(2)若AB=14,cos∠CAB= ,求線段OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A-3,-2)及點(diǎn)B0,4).

(1)求此一次函數(shù)的解析式;

(2)當(dāng)y=-5時(shí)求x的值;

(3)求此函數(shù)圖象與兩坐標(biāo)軸所圍成的三角形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案