如圖,PT是⊙O的切線,T為切點,PBA是割線,交⊙O于A、B兩點,與直徑CT交于點D,已知CD=2,AD=3,BD=4,那么PB等于( )

A.6
B.
C.7
D.20
【答案】分析:由相交弦定理知,TD•CD=AD•BD可求得TD的長;由勾股定理知,PT2=PD2-TD2,由切割線定理知,PT2=PB•PA=(PD-BD)(PD+AD),從而可求得PD,PB的長.
解答:解:∵TD•CD=AD•BD,CD=2,AD=3,BD=4,
∴TD=6,
∵PT2=PD2-TD2,
∴PT2=PB•PA=(PD-BD)(PD+AD),
∴PD=24,
∴PB=PD-BD=24-4=20.
故選D.
點評:本題利用了相交弦定理,勾股定理,切割線定理求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

8、如圖,PT是外切兩圓的公切線,T為切點,PAB,PCD分別為這兩圓的割線.若PA=3,PB=6,PC=2,則PD等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是⊙O的直徑,點C在⊙O的半徑AO上運動,PC⊥AB交⊙O于E,PT切⊙O于T,PC=2.5.
(1)當CE正好是⊙O的半徑時,PT=2,求⊙O的半徑;
(2)設(shè)PT2=y,AC=x,求出y與x之間的函數(shù)關(guān)系式;
(3)△PTC能不能變?yōu)橐訮C為斜邊的等腰直角三角形?若能,請求出△PTC的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

作業(yè)寶如圖,AB是⊙O的直徑,點C在⊙O的半徑AO上運動,PC⊥AB交⊙O于E,PT切⊙O于T,PC=2.5.
(1)當CE正好是⊙O的半徑時,PT=2,求⊙O的半徑;
(2)設(shè)PT2=y,AC=x,求出y與x之間的函數(shù)關(guān)系式;
(3)△PTC能不能變?yōu)橐訮C為斜邊的等腰直角三角形?若能,請求出△PTC的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省鹽城市東臺市時堰鎮(zhèn)中學九年級(上)第一次月考數(shù)學試卷(解析版) 題型:解答題

如圖,AB是⊙O的直徑,點C在⊙O的半徑AO上運動,PC⊥AB交⊙O于E,PT切⊙O于T,PC=2.5.
(1)當CE正好是⊙O的半徑時,PT=2,求⊙O的半徑;
(2)設(shè)PT2=y,AC=x,求出y與x之間的函數(shù)關(guān)系式;
(3)△PTC能不能變?yōu)橐訮C為斜邊的等腰直角三角形?若能,請求出△PTC的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年浙江省臺州市中考數(shù)學試卷(解析版) 題型:選擇題

(2004•溫州)如圖,PT是外切兩圓的公切線,T為切點,PAB,PCD分別為這兩圓的割線.若PA=3,PB=6,PC=2,則PD等于( )

A.12
B.9
C.8
D.4

查看答案和解析>>

同步練習冊答案