【題目】某區(qū)為了解全區(qū)2800名九年級(jí)學(xué)生英語(yǔ)口語(yǔ)考試成績(jī)的情況,從中隨機(jī)抽取了部分學(xué)生的成績(jī)(滿分24分,得分均為整數(shù)),制成下表:
分?jǐn)?shù)段(x分) | x≤16 | 17≤x≤18 | 19≤x≤20 | 21≤x≤22 | 23≤x≤24 |
人 數(shù) | 10 | 15 | 35 | 112 | 128 |
(1)填空:
①本次抽樣調(diào)查共抽取了 名學(xué)生;
②學(xué)生成績(jī)的中位數(shù)落在 分?jǐn)?shù)段;
③若用扇形統(tǒng)計(jì)圖表示統(tǒng)計(jì)結(jié)果,則分?jǐn)?shù)段為x≤16的人數(shù)所對(duì)應(yīng)扇形的圓心角為 °;
(2)如果將21分以上(含21分)定為優(yōu)秀,請(qǐng)估計(jì)該區(qū)九年級(jí)考生成績(jī)?yōu)閮?yōu)秀的人數(shù).
【答案】(1)①300 ②21≤x≤22③12(2)2240(人)
【解析】
(1)①將每一個(gè)分?jǐn)?shù)段的學(xué)生數(shù)相加即可得到抽取的總?cè)藬?shù);
②根據(jù)學(xué)生數(shù)確定中位數(shù)落在哪兩名學(xué)生的身上,然后找到這兩名學(xué)生落在哪一小組即可;
③用x≤16小組的學(xué)生數(shù)除以總?cè)藬?shù)乘以360°即可得到該組所占圓心角的度數(shù).
(2)用優(yōu)秀學(xué)生數(shù)除以抽查學(xué)生數(shù)乘以總?cè)藬?shù)即可.
(1)①∵10+15+35+112+128=300人,∴本次一共抽查了300名學(xué)生;
②∵一共 抽查了300名學(xué)生,∴中位數(shù)應(yīng)該是第150名和第151名學(xué)生的平均數(shù).
∵第150名和第151名學(xué)生在21≤x≤22小組,∴中位數(shù)落在21≤x≤22小組;
③∵=12°,∴其所占圓心角為12°;
(2)∵成績(jī)?cè)?/span>21分以上的有112+128=240人,∴2800×=2240人,∴估計(jì)該區(qū)九年級(jí)考生成績(jī)?yōu)閮?yōu)秀的有2240人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在Rt△ABC中,∠C=90°,點(diǎn)D是AC的中點(diǎn),且∠A+∠CDB=90°,過(guò)點(diǎn)A、D作⊙O,使圓心O在AB上,⊙O與AB交于點(diǎn)E.
(1)求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,若拋物線L1的頂點(diǎn)A在拋物線L2上,拋物線L2的頂點(diǎn)B也在拋物線L1上(點(diǎn)A與點(diǎn)B不重合),我們定義:這樣的兩條拋物L1,L2互為“友好”拋物線,可見(jiàn)一條拋物線的“友好”拋物線可以有多條.
(1)如圖2,已知拋物線L3:y=2x2-8x+4與y軸交于點(diǎn)C,試求出點(diǎn)C關(guān)于該拋物線對(duì)稱軸對(duì)稱的點(diǎn)D的坐標(biāo);
(2)請(qǐng)求出以點(diǎn)D為頂點(diǎn)的L3的友好拋物線L4的解析式,并指出L3與L4中y同時(shí)隨x增大而增大的自變量的取值范圍;
(3)若拋物y=a1 (x-m) 2+n的任意一條友好拋物線的解析式為y=a2 (x-h) 2+k,請(qǐng)寫出a1與a2的關(guān)系式,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以的一邊AB為直徑作,交BC于點(diǎn)D,交AC于點(diǎn)E,點(diǎn)D為弧BE的中點(diǎn).
試判斷的形狀,并說(shuō)明理由;
直線l切于點(diǎn)D,與AC及AB的延長(zhǎng)線分別交于點(diǎn)F,點(diǎn)G.
,求的值;
若半徑的長(zhǎng)為m,的面積為的面積的10倍,求BG的長(zhǎng)用含m的代數(shù)式表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點(diǎn),連接OA,過(guò)A作AB∥x軸,截取AB=OA(B在A右側(cè)),連接OB,交反比例函數(shù)y=的圖象于點(diǎn)P.
(1)求反比例函數(shù)y=的表達(dá)式;
(2)求點(diǎn)B的坐標(biāo);
(3)求△OAP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說(shuō)明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)
根據(jù)所給信息,解答以下問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是 度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在 等級(jí);
(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,AB=3,E是AD邊上的一點(diǎn)(E與A、D不重合),以BE為邊畫正方形BEFG,邊EF與邊CD交于點(diǎn)H.
(1)當(dāng)E為邊AD的中點(diǎn)時(shí),求DH的長(zhǎng);
(2)設(shè)DE=x,CH=y,求y與x之間的函數(shù)關(guān)系式,并求出y的最小值;
(3)若DE=,將正方形BEFG繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)適當(dāng)角度后得到正方形B'EF'G',如圖2,邊EF'與CD交于點(diǎn)N、EB'與BC交于點(diǎn)M,連結(jié)MN,求∠ENM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OABC中頂點(diǎn)A在x軸負(fù)半軸上,B、C在第二象限,對(duì)角線交于點(diǎn)D,若C、D兩點(diǎn)在反比例函數(shù)的圖象上,且OABC的面積等于12,則k的值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本(單位:元)、銷售價(jià)(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)請(qǐng)解釋圖中點(diǎn)D的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義;
(2)求線段AB所表示的與x之間的函數(shù)表達(dá)式;
(3)當(dāng)該產(chǎn)品產(chǎn)量為多少時(shí),獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com