【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側(cè)面和2個正三角形底面組成,硬紙板如圖兩種方法裁剪(裁剪后邊角料不再利用)

A方法:剪6個側(cè)面; B方法:剪4個側(cè)面和5個底面。

現(xiàn)有38張硬紙板,裁剪時x張用A方法,其余用B方法。

1)用x的代數(shù)式分別表示裁剪出的側(cè)面和底面的個數(shù);

2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個盒子?

【答案】1)側(cè)面:(個),底面:(個) (260個.

【解析】試題分析:(1)因為x張用A方法,則有(38-x)張用B方法,就可以根據(jù)題意分別表示出側(cè)面和底面的個數(shù).(2)由題意可得,側(cè)面?zhèn)數(shù)和底面?zhèn)數(shù)之比為3:2,可以列出一元一次方程,求出x的值,從而可得側(cè)面的總數(shù),即可求得.

試題解析:(1)根據(jù)題意可得,側(cè)面:(個),底面:(個).

2)根據(jù)題意可得,,解得x=7,所以盒子=(個).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】材料1:一般地,個相同因數(shù)相乘:記為,此時,3叫做以2為底的8的對數(shù),記為).那么, ,

材料2:新規(guī)定一種運算法則:自然數(shù)1到n的連乘積用n!表示,例如:1!=1 ,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,在這種規(guī)定下,請你解決下列問題:

1計算 5!=

2已知x為整數(shù) ,求出滿足該等式的x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的正方形網(wǎng)格中,ABC的頂點均在格點上,請在所給直角坐標系中按要求畫圖和解答下列問題:

(1)以A點為旋轉(zhuǎn)中心,將ABC繞點A順時針旋轉(zhuǎn)90°得AB1C1,畫出AB1C1

(2)作出ABC關于坐標原點O成中心對稱的A2B2C2

(3)作出點C關于x軸的對稱點P.若點P向右平移x(x取整數(shù))個單位長度后落在A2B2C2的內(nèi)部,請直接寫出x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,DAE=E,B=D.直線AD與BE平行嗎?直線AB與DC平行嗎?說明理由(請在下面的解答過程的空格內(nèi)填空或在括號內(nèi)填寫理由).

解:直線AD與BE平行,直線AB與DC

理由如下:

∵∠DAE=E,(已知)

,(內(nèi)錯角相等,兩條直線平行)

∴∠D=DCE. (兩條直線平行,內(nèi)錯角相等)

∵∠B=D,(已知)

∴∠B= ,(等量代換)

.(同位角相等,兩條直線平行)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在5次打靶測試中命中的環(huán)數(shù)如下:

甲:8,8,7,8,9

乙:5,9,7,10,9

(1)填寫下表:

平均數(shù)

眾數(shù)

中位數(shù)

方差

8

8

0.4

9

3.2

(2)教練根據(jù)這5次成績,選擇甲參加射擊比賽,教練的理由是什么?

(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差 .(填“變大”、“變小”或“不變”).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016云南省第14題)如果關于x的一元二次方程x2+2ax+a+2=0有兩個相等的實數(shù)根,那么實數(shù)a的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家之一為了增強居民的節(jié)水意識,某市自來水公司對居民用水采用以戶為單位分段計費的辦法收費即一個月用水10噸以內(nèi)包括10噸的用戶每噸收水費a元;一個月用水超過10噸的用戶,10噸水仍按每噸a元收費,超過10噸的部分按每噸b元b>a收費設一戶居民月用水x噸,應收水費y元y與x之間的函數(shù)關系如圖

1求a的值某戶居民上月用水8噸,應收水費多少元;

2求b的值,并寫出當x>10時y與x之間的函數(shù)關系式;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,B,C兩點把線段AD分成2:5:3三部分,M為AD的中點,BM=6cm,求CM和AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個正方形和兩個等邊三角形的位置如圖所示,若3=50°,則1+2=( )

A.90° B.100° C.130° D.180°

查看答案和解析>>

同步練習冊答案