【題目】如圖,△OA1B1,△A1A2B2,△A2A3B3,…是分別以A1,A2,A3,…為直角頂點,一條直角邊在x軸正半軸上的等腰直角三角形,其斜邊的中點C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函數(x>0)的圖象上.則y1+y2+…+y8的值為( )
A.B.6C.D.
【答案】C
【解析】
根據點C1的坐標,確定y1,可求反比例函數關系式,由點C1是等腰直角三角形的斜邊中點,可以得到OA1的長,然后再設未知數,表示點C2的坐標,確定y2,代入反比例函數的關系式,建立方程解出未知數,表示點C3的坐標,確定y3,……然后再求和.
解:過C1、C2、C3…分別作x軸的垂線,垂足分別為D1、D2、D3…
其斜邊的中點C1在反比例函數y=,
∴C1(2,2),即y1=2,
∴OD1=D1A1=2,
設A1D2=a,則C2D2=a 此時C2(4+a,a),代入y=,得:a(4+a)=4,
解得:,即:y2=;
同理:y3=;
y4=;
……
;
∴y1+y2+…+y8=
=
=
=;
故選:C.
科目:初中數學 來源: 題型:
【題目】我們知道,三角形的內心是三條角平分線的交點,過三角形內心的一條直線與兩邊相交,兩交點之間的線段把這個三角形分成兩個圖形.若有一個圖形與原三角形相似,則把這條線段叫做這個三角形的“內似線”.
(1)等邊三角形“內似線”的條數為 ;
(2)如圖,△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求證:BD是△ABC的“內似線”;
(3)在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分別在邊AC、BC上,且EF是△ABC的“內似線”,求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中國式過馬路,是網友對部分中國人集體闖紅燈現象的一種調侃,即“湊夠一撮人就可以走了,和紅綠燈無關”針對這種現象某媒體記者在多個路口采訪闖紅燈的行人,得出形成這種現象的四個基本原因,①紅綠燈設置不科學,交通管理混亂占1%;②僥幸心態(tài);③執(zhí)法力度不夠占9%;④從眾心理,該記者將這次調查情況整理并繪制了如下尚不完整的統(tǒng)計圖,請根據相關信息,解答下列問題.
(1)該記者本次一共調査了 名行人;
(2)求圖1中④所在扇形的圓心角,并補全圖2;
(3)在本次調查中,記者隨機采訪其中的一名行人,求他屬于第②種情況的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一幅長20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2.
(1)求y與x之間的函數關系式;
(2)若圖案中三條彩條所占面積是圖案面積的,求橫、豎彩條的寬度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A的坐標是(4,0),并且OA=OC=4OB,動點P在過A,B,C三點的拋物線上.
(1)求拋物線的解析式;
(2)在AC上方的拋物線上有一動點G,如圖,當點G運動到某位置時,以AG,AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上,求出此時點G的坐標;
(3)若拋物線上存在點P,使得△ACP是以AC為直角邊的直角三角形,直接寫出所有符合條件的點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E為邊AD的中點,點F在邊CD上,且∠BEF=90°,延長EF交BC的延長線于點G.
(1)求證:△ABE∽△EGB.
(2)若AB=4,求CG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是⊙O的內接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點F,點E在AB的延長線上,射線EM經過點C,且∠ACE+∠AFO=180°.
(1)求證:EM是⊙O的切線;
(2)若∠A=∠E,BC=,求陰影部分的面積.(結果保留和根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司共有三個部門,根據每個部門的員工人數和相應每人所創(chuàng)的年利潤繪制成如下的統(tǒng)計表和扇形圖.
各部門人數及每人所創(chuàng)年利潤統(tǒng)計表
部門 | 員工人數 | 每人所創(chuàng)的年利潤/萬元 |
A | 5 | 10 |
B | 8 | |
C | 5 |
(1)①在扇形圖中,C部門所對應的圓心角的度數為___________;
②在統(tǒng)計表中,___________,___________;
(2)求這個公司平均每人所創(chuàng)年利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com