【題目】定義新運算:A*B=A+B+AB,則下列結論正確的是(

2*1=5 2*(-3= -7 (-5 *8=37 (-7*(-9=47

A. ①②B. ①②③C. ③④D. ①②④

【答案】D

【解析】

原式各項利用已知的新定義計算得到結果,即可做出判斷。

2*1=2+1+2=5,故正確

2*(-3=2-3-6=-7,故正確

(-5 *8=-5+8-40=-37,故錯誤

(-7*(-9=-7-9+63=47,故正確

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,我們定義直線y=axa為拋物線a、b、c為常數(shù),a0)的“夢想直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“夢想三角形”.

已知拋物線與其“夢想直線”交于A、B兩點(點A在點B的左側),與x軸負半軸交于點C

1)填空:該拋物線的“夢想直線”的解析式為 ,點A的坐標為 ,點B的坐標為 ;

2)如圖,點M為線段CB上一動點,將△ACMAM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“夢想三角形”,求點N的坐標;

3)當點E在拋物線的對稱軸上運動時,在該拋物線的“夢想直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點EF的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,等邊ABC內(nèi)接于⊙O,點P是劣弧上的一點(端點除外),延長BPD,使BD=AP,連接CD.

(1)若AP過圓心O,如圖①,請你判斷PDC是什么三角形?并說明理由;

(2)若AP不過圓心O,如圖②,PDC又是什么三角形?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某單位要招聘1名英語翻譯,張明參加招聘考試的成績?nèi)缦卤硭?/span>

張明

90

80

83

82

若把聽、說、讀、寫的成績按3:3:2:2計算平均成績,則張明的平均成績?yōu)?/span>_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值(x 2y)2 (8x2 y2 10xy3 2xy) 2xy,其中x=-1y=-2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( )

A. a+a= a 2 B. a 6÷a 3=a 2 C. (a+b)2=a2+b2 D. (a b3) 2= a2 b6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:a2 + 5a =________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一組數(shù)據(jù)3,x,4,5,6的眾數(shù)是5,則這組數(shù)據(jù)的中位數(shù)是( )
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016·棗莊中考)如圖,已知拋物線yax2bxc(a≠0)的對稱軸為直線x

1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.

(1)若直線ymxn經(jīng)過BC兩點,求直線BC和拋物線的解析式;

(2)在拋物線的對稱軸x=-1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;

(3)設點P為拋物線的對稱軸x=-1上的一個動點,求使△BPC為直角三角形時點P的坐標.

查看答案和解析>>

同步練習冊答案