【題目】如圖,直線l1的函數(shù)解析式為y=﹣2x+4,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A、B,直線l1、l2交于點(diǎn)C.
(1)求直線l2的函數(shù)解析式;
(2)求△ADC的面積;
(3)在直線l2上是否存在點(diǎn)P,使得△ADP面積是△ADC面積的2倍?如果存在,請(qǐng)求出P坐標(biāo);如果不存在,請(qǐng)說明理由.
【答案】
(1)解:設(shè)直線l2的函數(shù)解析式為y=kx+b,
將A(5,0)、B(4,﹣1)代入y=kx+b,
,解得: ,
∴直線l2的函數(shù)解析式為y=x﹣5
(2)解:聯(lián)立兩直線解析式成方程組,
,解得: ,
∴點(diǎn)C的坐標(biāo)為(3,﹣2).
當(dāng)y=﹣2x+4=0時(shí),x=2,
∴點(diǎn)D的坐標(biāo)為(2,0).
∴S△ADC= AD|yC|= ×(5﹣2)×2=3
(3)解:假設(shè)存在.
∵△ADP面積是△ADC面積的2倍,
∴|yP|=2|yC|=4,
當(dāng)y=x﹣5=﹣4時(shí),x=1,
此時(shí)點(diǎn)P的坐標(biāo)為(1,﹣4);
當(dāng)y=x﹣5=4時(shí),x=9,
此時(shí)點(diǎn)P的坐標(biāo)為(9,4).,只需
綜上所述:在直線l2上存在點(diǎn)P(1,﹣4)或(9,4),使得△ADP面積是△ADC面積的2倍.
【解析】第1小題,所求直線經(jīng)過A、B兩點(diǎn),把y=kx+b這兩點(diǎn)的坐標(biāo)代入可求解;第2小題,要求三角形ADC的面積,只需求出C、D兩點(diǎn)的坐標(biāo),點(diǎn)C是已知兩直線的交點(diǎn),聯(lián)立解方程組可得坐標(biāo),點(diǎn)D是直線y=﹣2x+4與x軸的交點(diǎn),問題的解;第3小題,這是一個(gè)存在性問題,假定存在,根據(jù)△ADP面積是△ADC面積的2倍計(jì)算,有解即存在,否則不存在。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形紙片中,是邊上的點(diǎn),將紙片沿折疊,使點(diǎn)落在點(diǎn)處,連接,當(dāng)為直角三角形時(shí),的長(zhǎng)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC和△ADE都是等邊三角形.
(1)求證:BD=CE;
(2)如圖2,若BD的中點(diǎn)為P , CE的中點(diǎn)為Q , 請(qǐng)判斷△APQ的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名射擊運(yùn)動(dòng)員在某次訓(xùn)練中各射擊10發(fā)子彈,成績(jī)?nèi)绫恚?/span>
甲 | 8 | 9 | 7 | 9 | 8 | 6 | 7 | 8 | 10 | 8 |
乙 | 6 | 7 | 9 | 7 | 9 | 10 | 8 | 7 | 7 | 10 |
且 =8,S乙2=1.8,S甲2=1.2,根據(jù)上述信息完成下列問題:
(1)乙運(yùn)動(dòng)員射擊訓(xùn)練成績(jī)的眾數(shù)是 , 中位數(shù)是 .
(2)求甲運(yùn)動(dòng)員射擊成績(jī)的平均數(shù),并判斷甲、乙兩人在本次射擊成績(jī)的穩(wěn)定性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廣告公司設(shè)計(jì)一幅周長(zhǎng)為16米的矩形廣告牌,廣告設(shè)計(jì)費(fèi)為每平方米2000元.設(shè)矩形一邊長(zhǎng)為x,面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)設(shè)計(jì)費(fèi)能達(dá)到24000元嗎?為什么?
(3)當(dāng)x是多少米時(shí),設(shè)計(jì)費(fèi)最多?最多是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件中,不能判定兩直角三角形全等的是( )
A. 斜邊和一銳角對(duì)應(yīng)相等
B. 斜邊上的中線和一直角邊對(duì)應(yīng)相等
C. 兩邊分別相等
D. 直角的平分線和一直角邊對(duì)應(yīng)相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】上海市2018年有77所民辦小學(xué)進(jìn)行招生,共計(jì)招生1.4萬人,這里的1.4萬精確到_______位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用反證法證明“a>b”時(shí),應(yīng)假設(shè)( )
A. a<b B. a≤b C. a≥b D. a≠b
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com