14、已知如圖,B是AC上一點(diǎn),AD⊥AB,EC⊥BC,∠DBE=90°.求證:△ABD∽△CEB.
分析:根據(jù)直角三角形的性質(zhì)證得∠ABD=∠E,然后根據(jù)兩角對(duì)應(yīng)相等的兩個(gè)三角形相似即可證得.
解答:證明:∵AD⊥AB,EC⊥BC
∴∠A=∠BCE=90°(1分)
又∵∠DBE=90°
∴∠ABD+∠EBC=90°
又∵∠E+∠EBC=90°
∴∠ABD=∠E(3分)
∴△ABD∽△CEB(5分)
點(diǎn)評(píng):本題主要考查了三角形相似的判定,正確證得:∠ABD=∠E是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、已知如圖,B是AC上一點(diǎn),△ABD和△DCE都是等邊三角形.
(1)求證:AC=BE;
(2)若BE⊥DC,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知如圖,B是AC上一點(diǎn),△ABD和△DCE都是等邊三角形.
(1)求證:AC=BE;
(2)若BE⊥DC,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知如圖,B是AC上一點(diǎn),AD⊥AB,EC⊥BC,∠DBE=90°.求證:△ABD∽△CEB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年浙江省湖州市中考數(shù)學(xué)試卷 題型:解答題

(1998•湖州)已知如圖,B是AC上一點(diǎn),△ABD和△DCE都是等邊三角形.
(1)求證:AC=BE;
(2)若BE⊥DC,求∠BDC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案