【題目】如圖,AB是圓O的直徑,弦CD⊥AB,∠BCD=30°,CD=4 ,則S陰影=( )
A.2π??
B. π??
C. π??
D. π
【答案】B
【解析】解:如圖,假設(shè)線段CD、AB交于點(diǎn)E,
∵AB是⊙O的直徑,弦CD⊥AB,
∴CE=ED=2 ,
又∵∠BCD=30°,
∴∠DOE=2∠BCD=60°,∠ODE=30°,
∴OE=DEcot60°=2 × =2,OD=2OE=4,
∴S陰影=S扇形ODB﹣S△DOE+S△BEC= ﹣ OE×DE+ BECE= ﹣2 +2 = .
故選B.
【考點(diǎn)精析】本題主要考查了垂徑定理和圓周角定理的相關(guān)知識(shí)點(diǎn),需要掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程(a+c)x2+2bx+a﹣c=0,其中a、b、c分別為△ABC三邊的長(zhǎng).下列關(guān)于這個(gè)方程的解和△ABC形狀判斷的結(jié)論錯(cuò)誤的是( )
A. 如果x=﹣1是方程的根,則△ABC是等腰三角形
B. 如果方程有兩個(gè)相等的實(shí)數(shù)根,則△ABC是直角三角形
C. 如果△ABC是等邊三角形,方程的解是x=0或x=﹣1
D. 如果方程無(wú)實(shí)數(shù)解,則△ABC是銳角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表記錄了一名球員在罰球線上投籃的結(jié)果,
投籃次數(shù)(n) | 50 | 100 | 150 | 209 | 250 | 300 | 350 |
投中次數(shù)(m) | 28 | 60 | 78 | 104 | 123 | 152 | 175 |
投中頻率(n/m) | 0.56 | 0.60 |
| 0.49 |
|
|
(1)計(jì)算并填寫表中的投中頻率(精確到0.01);
(2)這名球員投籃一次,投中的概率約是多少(精確到0.1)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC=8,AO=BO,點(diǎn)M是射線CO上的一個(gè)動(dòng)點(diǎn),∠AOC=60°,則當(dāng)△ABM為直角三角形時(shí),AM的長(zhǎng)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明的家位于一條南北走向的河流MN的東側(cè)A處,某一天小明從家出發(fā)沿南偏西30°方向走60 m到達(dá)河邊B處取水,然后沿另一方向走80 m到達(dá)菜地C處澆水,最后沿第三方向走100 m回到家A處.問小明在河邊B處取水后是沿哪個(gè)方向行走的?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)中學(xué)生體質(zhì)健康綜合評(píng)定成績(jī)?yōu)?/span>x分,滿分為100分,規(guī)定:85≤x≤100為A級(jí),75≤x≤85為B級(jí),60≤x≤75為C級(jí),x<60為D級(jí).現(xiàn)隨機(jī)抽取福海中學(xué)部分學(xué)生的綜合評(píng)定成績(jī),整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問題:
(1)在這次調(diào)查中,一共抽取了 名學(xué)生,α= %;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中C級(jí)對(duì)應(yīng)的圓心角為 度;
(4)若該校共有2000名學(xué)生,請(qǐng)你估計(jì)該校D級(jí)學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=120°,OC是∠AOB內(nèi)部任意一條射線,OD、OE分別是∠AOC、∠BOC的角平分線,下列敘述正確的是( 。
A. ∠DOE的度數(shù)不能確定 B. ∠AOD=∠EOC
C. ∠AOD+∠BOE=60° D. ∠BOE=2∠COD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】決心試一試,請(qǐng)閱讀下列材料:計(jì)算:
解法一:原式=
=
=
解法二:原式=
=
=
=
解法三:原式的倒數(shù)為:
=
=﹣20+3﹣5+12
=﹣10
故原式 =
上述得出的結(jié)果不同,肯定有錯(cuò)誤的解法,你認(rèn)為解法 是錯(cuò)誤的,在正確的解法中,你認(rèn)為解法 最簡(jiǎn)捷.然后請(qǐng)解答下列問題,計(jì)算:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com