如圖,平面直角坐標系中的方格陣表示一個縱橫交錯的街道模型的一部分,以O(shè)為原點,建立如圖所示的平面直角坐標系,x軸,y軸的正方向分別表示正東、正北方向,出租車只能沿街道(網(wǎng)格線)行駛,且從一個路口(格點)到另一個路口,必須選擇最短路線,稱最短路線的長度為兩個街區(qū)之間的“出租車距離”.設(shè)圖中每個小正方形方格的邊長為1個單位.可以發(fā)現(xiàn):
從原點O到(2,-1)的“出租車距離”為3,最短路線有3條;
從原點O到(2,2)的“出租車距離”為4,最短路線有6條.
(1)①從原點O到(6,1)的“出租車距離”為______.最短路線有______條;
②與原點O的“出租車距離”等于30的路口共有______個.
(2)①解釋應(yīng)用:從原點O到坐標(n,2)(n為大于2的整數(shù))的路口A,有多少條最短路線?(請給出適當?shù)恼f理或過程)
②解決問題:
從坐標為(1,-2)的路口到坐標為(3,36)的路口,最短路線有______條.

【答案】分析:(1)①根據(jù)題目信息,“出租車距離”等于點的橫坐標與縱坐標絕對值的和,進行計算即可求解;
②平面被坐標系分4個區(qū)域,在每一個區(qū)域內(nèi)與原點0的“出租車距離”等于30的街區(qū)(m,n)滿足 m,n都是正整數(shù),|m|+|n|=30,對于m的任意取值,n都有唯一的正整數(shù)和它對應(yīng),所以m可取30個值,n有30個值和它對應(yīng),然后即可求解;
(2)①出租車從原點O到坐標(n,2)(n為大于2的整數(shù))的街區(qū),需走(n+2)路程,不論橫坐標與縱坐標,沒確定一個單位的走法,則還剩下(n+2-1)種走法,依此類推,進行計算即可;
②把原點坐標平移到(1,-2),則點(3,36)的坐標變?yōu)椋?,38),然后根據(jù)①中的結(jié)論進行計算即可.
解答:解:(1)①6+1=7,7;
②與原點0的“出租車距離”等于30的街區(qū)(m,n)滿足m,n都是正整數(shù),|m|+|n|=30,
由對稱性,考慮m>0,n>,
m依次取1,2,…30,對應(yīng)的n為29,28,…,0,共30個,
∴與原點0的“出租車距離”等于30的街區(qū)共30×4=120個;

(2)①從原點O到坐標(n,2)的“出租車距離”為n+2,
則最短路線的條數(shù)是(n+2-1)+(n+2-2)+(n+2-3)+…+1,
=;
②把原點坐標平移到(1,-2),則點(3,36)的坐標變?yōu)椋?,38),
∴“出租車距離”為2+38=40,
=780.
故答案為:(1)①7,7;②120;(2)①;②780.
點評:本題考查理解題意能力以及看圖能力,關(guān)鍵是明白怎樣是“出租車距離”和路線的走法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,平面直角坐標系中,O為直角三角形ABC的直角頂點,∠B=30°,銳角頂點A在雙曲線y=
1x
上運動,則B點在函數(shù)解析式
 
上運動.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面直角坐標系中,⊙P與x軸分別交于A、B兩點,點P的坐標為(3,-1),AB精英家教網(wǎng)=2
3

(1)求⊙P的半徑.
(2)將⊙P向下平移,求⊙P與x軸相切時平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面直角坐標系中,OB在x軸上,∠ABO=90°,點A的坐標為(1,2).將△AOB繞點A逆時針旋轉(zhuǎn)90°,則點O的對應(yīng)點C的坐標為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:平面直角坐標系中,△ABC的三個頂點的坐標為A(a,0),B(b,0),C(0,c),且a,b,c滿足
a+2
+|b-2|+(c-b)2=0
.點D為線段OA上一動點,連接CD.
(1)判斷△ABC的形狀并說明理由;
(2)如圖,過點D作CD的垂線,過點B作BC的垂線,兩垂線交于點G,作GH⊥AB于H,求證:
S△CAD
S△DGH
=
AD
GH
;
(3)如圖,若點D到CA、CO的距離相等,E為AO的中點,且EF∥CD交y軸于點F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖在平面直角坐標系中,A點坐標為(8,0),B點坐標為(0,6)C是線段AB的中點.請問在y軸上是否存在一點P,使得以P、B、C為頂點的三角形與△AOB相似?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案