【題目】有兩張完全重合的矩形紙片,將其中一張繞點A順時針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),連接BD,MF,若BD=4cm,∠ADB=30°.
(1)試探究線段BD與線段MF的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(2)把△BCD與△MEF剪去,將△ABD繞點A順時針旋轉(zhuǎn)得△AB1D1,邊AD1交FM于點K(如圖2),設(shè)旋轉(zhuǎn)角為β(0°<β<90°),當△AFK為等腰三角形時,求β的度數(shù).
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F2M2與AD交于點P,A2M2與BD交于點N,當NP∥AB時,求平移的距離.
【答案】(1)BD=MF,BD⊥MF;(2)β的度數(shù)為60°或15°;(3)平移的距離是(3﹣)cm.
【解析】
(1)由旋轉(zhuǎn)的性質(zhì)得到BD=MF,△BAD≌△MAF,推出BD=MF,∠ADB=∠AFM=30°,進而可得∠DNM的大小.
(2)分兩種情形討論①當AK=FK時,②當AF=FK時,根據(jù)旋轉(zhuǎn)的性質(zhì)得出結(jié)論.
(3)求平移的距離是A2A的長度.在矩形PNA2A中,A2A=PN,只要求出PN的長度就行.用△DPN∽△DAB得出對應(yīng)線段成比例,即可得到A2A的大。
(1)結(jié)論:BD=MF,BD⊥MF.理由:
如圖1,延長FM交BD于點N.
由題意得:△BAD≌△MAF,∴BD=MF,∠ADB=∠AFM.
又∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°,∴∠DNM=90°,∴BD⊥MF.
(2)如圖2.
①當AK=FK時,∠KAF=∠F=30°,則∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,即β=60°;
②當AF=FK時,∠FAK(180°﹣∠F)=75°,∴∠BAB1=90°﹣∠FAK=15°,即β=15°;
綜上所述:β的度數(shù)為60°或15°;
(3)如圖3.
由題意得矩形PNA2A.設(shè)A2A=x,則PN=x.在Rt△A2M2F2中,∵F2M2=FM=4,∠F=∠ADB=30°,∴A2M2=2,A2F2=2,∴AF2=2x.
∵∠PAF2=90°,∠PF2A=30°,∴AP=AF2tan30°=2x,∴PD=AD﹣AP=22x.
∵NP∥AB,∴∠DNP=∠B.
∵∠D=∠D,∴△DPN∽△DAB,∴,∴,解得:x=,即A2A=,∴平移的距離是()cm.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB為的直徑,點C是半圓上一點,CE⊥AB于E,BF∥OC,連接BC,CF.
(1)求證:∠OCF=∠ECB;
(2)當AB=10,BC=,求CF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等邊△ABC,頂點B(0,0),C(2,0),規(guī)定把△ABC先沿x軸繞著點C順時針旋轉(zhuǎn),使點A落在x軸上 ,稱為一次變換,再沿x軸繞著點A順時針旋轉(zhuǎn),使點B落在x軸上 ,稱為二次變換,……經(jīng)過連續(xù)2017次變換后,頂點A的坐標是:
A. (4033, ) B. (4033,0) C. (4036, ) D. (4036,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點在的直徑的延長線上,點在上,且AC=CD,∠ACD=120°.
(1)求證:是的切線;
(2)若的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點稱為格點.如圖,5×5正方形方格紙圖中,點A,B都在格點處.
(1)請在圖中作等腰△ABC,使其底邊AC=2,且點C為格點;
(2)在(1)的條件下,作出平行四邊形ABDC,且D為格點,并直接寫出平行四邊形ABDC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的小布袋中裝有4個質(zhì)地、大小完全相同的小球,它們分別標有數(shù)字0,1,2,3,小明從布袋里隨機摸出一個小球,記下數(shù)字為,小紅在剩下的3個小球中隨機摸出一個小球,記下數(shù)字為,這樣確定了點的坐標.
(1)畫樹狀圖或列表,寫出點所有可能的坐標;
(2)小明和小紅約定做一個游戲,其規(guī)則為:若在第一象限,則小明勝;否則,小紅勝;這個游戲公平嗎?請你作出判斷并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】寒假中,某校七年級開展“閱讀經(jīng)典,讀一本好書”的活動.為了解學生閱讀情況,從全年級學生中隨機抽取了部分學生調(diào)查讀書種類情況,并進行統(tǒng)計分析,繪制了如下不完整的統(tǒng)計圖表:
讀書種類情況統(tǒng)計表
種類 | 頻數(shù) | 百分比 |
A.科普類 | a | 32% |
B.文學類 | 20 | 40% |
C.藝術(shù)類 | 8 | b |
D.其他類 | 6 | 12% |
請根據(jù)以上信息,解答下列問題:
(1)填空:a= ,b= ,并補全條形統(tǒng)計圖;
(2)若繪制“閱讀情況扇形統(tǒng)計圖”,則“藝術(shù)類”所對應(yīng)扇形的圓心角度數(shù)為 °;
(3)若該校七年級共有800人,請估計全年級在本次活動中讀書種類為“藝術(shù)類”的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AB=12,弦CD⊥AB于點E,∠DAB=30°,則圖中陰影部分的面積是( )
A.18πB.12πC.18π﹣2D.12π﹣9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線交于點O,DF∥AC,CF∥BD.
(1)求證:四邊形OCFD是矩形;(2)若AD=5,BD=8,計算tan∠DCF的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com