(2007•河北)在△ABC中,AB=AC,CG⊥BA交BA的延長(zhǎng)線于點(diǎn)G.一等腰直角三角尺按如圖1所示的位置擺放,該三角尺的直角頂點(diǎn)為F,一條直角邊與AC邊在一條直線上,另一條直角邊恰好經(jīng)過(guò)點(diǎn)B.
(1)在圖1中請(qǐng)你通過(guò)觀察、測(cè)量BF與CG的長(zhǎng)度,猜想并寫(xiě)出BF與CG滿(mǎn)足的數(shù)量關(guān)系,然后證明你的猜想;
(2)當(dāng)三角尺沿AC方向平移到圖2所示的位置時(shí),一條直角邊仍與AC邊在同一直線上,另一條直角邊交BC邊于點(diǎn)D,過(guò)點(diǎn)D作DE⊥BA于點(diǎn)E.此時(shí)請(qǐng)你通過(guò)觀察、測(cè)量DE、DF與CG的長(zhǎng)度,猜想并寫(xiě)出DE+DF與CG之間滿(mǎn)足的數(shù)量關(guān)系,然后證明你的猜想;
(3)當(dāng)三角尺在(2)的基礎(chǔ)上沿AC方向繼續(xù)平移到圖3所示的位置(點(diǎn)F在線段AC上,且點(diǎn)F與點(diǎn)C不重合)時(shí),(2)中的猜想是否仍然成立(不用說(shuō)明理由).

【答案】分析:(1)由于有∠F=∠G=90°,∠FAB=∠GAC,AB=AC,故由AAS證得△ABF≌△ACG?BF=CG;
(2)過(guò)點(diǎn)D作DH⊥CG于點(diǎn)H(如圖).易證得四邊形EDHG為矩形,有DE=HG,DH∥BG?∠GBC=∠HDC.又有AB=AC?∠FCD=∠GBC=∠HDC.又∠F=∠DHC=90°?CD=DC,可由AAS證得△FDC≌△HCD?DF=CH,有GH+CH=DE+DF=CG.
解答:解:(1)BF=CG;
證明:在△ABF和△ACG中
∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC
∴△ABF≌△ACG(AAS)
∴BF=CG;

(2)DE+DF=CG;
證明:過(guò)點(diǎn)D作DH⊥CG于點(diǎn)H(如圖2)
∵DE⊥BA于點(diǎn)E,∠G=90°,DH⊥CG
∴四邊形EDHG為矩形
∴DE=HG,DH∥BG
∴∠GBC=∠HDC
∵AB=AC
∴∠FCD=∠GBC=∠HDC
又∵∠F=∠DHC=90°,CD=DC
∴△FDC≌△HCD(AAS)
∴DF=CH
∴GH+CH=DE+DF=CG,即DE+DF=CG;

(3)仍然成立.
證明:過(guò)點(diǎn)D作DH⊥CG于點(diǎn)H(如圖3)
∵DE⊥BA于點(diǎn)E,∠G=90°,DH⊥CG
∴四邊形EDHG為矩形,
∴DE=HG,DH∥BG,
∴∠GBC=∠HDC,
∵AB=AC,
∴∠FCD=∠GBC=∠HDC,
又∵∠F=∠DHC=90°,CD=DC,
∴△FDC≌△HCD(AAS)
∴DF=CH,
∴GH+CH=DE+DF=CG,
即DE+DF=CG.
點(diǎn)評(píng):本題考查了等腰直角三角形的性質(zhì)及全等三角形的判定和性質(zhì)求解;作出輔助線是正確解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年寧夏石嘴山市平羅縣寶豐中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

(2007•河北)在一個(gè)暗箱里放有a個(gè)除顏色外其它完全相同的球,這a個(gè)球中紅球只有3個(gè).每次將球攪拌均勻后,任意摸出一個(gè)球記下顏色再放回暗箱.通過(guò)大量重復(fù)摸球?qū)嶒?yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%,那么可以推算出a大約是( )
A.12
B.9
C.4
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《尺規(guī)作圖》(01)(解析版) 題型:解答題

(2007•河北)在圖1-5中,正方形ABCD的邊長(zhǎng)為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
操作示例:
當(dāng)2b<a時(shí),如圖1,在BA上選取點(diǎn)G,使BG=b,連接FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
思考發(fā)現(xiàn):
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°到△CHD的位置.這樣,對(duì)于剪拼得到的四邊形FGCH(如圖1),過(guò)點(diǎn)F作FM⊥AE于點(diǎn)M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
實(shí)踐探究:
(1)正方形FGCH的面積是______;(用含a,b的式子表示)
(2)類(lèi)比圖1的剪拼方法,請(qǐng)你就圖2-圖4的三種情形分別畫(huà)出剪拼成一個(gè)新正方形的示意圖.

聯(lián)想拓展:
小明通過(guò)探究后發(fā)現(xiàn):當(dāng)b≤a時(shí),此類(lèi)圖形都能剪拼成正方形,且所選取的點(diǎn)G的位置在BA方向上隨著b的增大不斷上移;當(dāng)b>a時(shí),如圖5的圖形能否剪拼成一個(gè)正方形?若能,請(qǐng)你在圖中畫(huà)出剪拼的示意圖;若不能,簡(jiǎn)要說(shuō)明理由.


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(37)(解析版) 題型:選擇題

(2007•河北)在一個(gè)暗箱里放有a個(gè)除顏色外其它完全相同的球,這a個(gè)球中紅球只有3個(gè).每次將球攪拌均勻后,任意摸出一個(gè)球記下顏色再放回暗箱.通過(guò)大量重復(fù)摸球?qū)嶒?yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%,那么可以推算出a大約是( )
A.12
B.9
C.4
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年廣東省汕頭市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:選擇題

(2007•河北)在一個(gè)暗箱里放有a個(gè)除顏色外其它完全相同的球,這a個(gè)球中紅球只有3個(gè).每次將球攪拌均勻后,任意摸出一個(gè)球記下顏色再放回暗箱.通過(guò)大量重復(fù)摸球?qū)嶒?yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%,那么可以推算出a大約是( )
A.12
B.9
C.4
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年河北省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•河北)在圖1-5中,正方形ABCD的邊長(zhǎng)為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
操作示例:
當(dāng)2b<a時(shí),如圖1,在BA上選取點(diǎn)G,使BG=b,連接FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
思考發(fā)現(xiàn):
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°到△CHD的位置.這樣,對(duì)于剪拼得到的四邊形FGCH(如圖1),過(guò)點(diǎn)F作FM⊥AE于點(diǎn)M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
實(shí)踐探究:
(1)正方形FGCH的面積是______;(用含a,b的式子表示)
(2)類(lèi)比圖1的剪拼方法,請(qǐng)你就圖2-圖4的三種情形分別畫(huà)出剪拼成一個(gè)新正方形的示意圖.

聯(lián)想拓展:
小明通過(guò)探究后發(fā)現(xiàn):當(dāng)b≤a時(shí),此類(lèi)圖形都能剪拼成正方形,且所選取的點(diǎn)G的位置在BA方向上隨著b的增大不斷上移;當(dāng)b>a時(shí),如圖5的圖形能否剪拼成一個(gè)正方形?若能,請(qǐng)你在圖中畫(huà)出剪拼的示意圖;若不能,簡(jiǎn)要說(shuō)明理由.


查看答案和解析>>

同步練習(xí)冊(cè)答案