【題目】如圖,C是BE上一點(diǎn),D是AC的中點(diǎn),且AB=AC,DE=DB,∠A=60°,△ABC的周長(zhǎng)是18cm.求∠E的度數(shù)及CE的長(zhǎng)度.

【答案】解:∵AB=AC,∠A=60°, ∴△ABC是等邊三角形,
∴AC=BC=AB,∠ABC=∠ACB=∠A=60°,
∵△ABC的周長(zhǎng)是18cm,
∴AB=AC=BC= ×18=6cm,
∵D是AC的中點(diǎn),
∴CD= AC= ×6=3cm,
∵AB=BC,D是AC的中點(diǎn),
∴∠CBD= ∠ABC= ×60°=30°,
∵BD=DE,
∴∠CBD=∠E=30°,
∵∠ACB是△DCE的一個(gè)外角,
∴∠ACB=∠E+∠CDE,
∴∠CDE=60°﹣30°=30°,
∴∠CDE=∠E,
∴CE=CD=3cm.
【解析】根據(jù)有一個(gè)角是60°的等腰三角形是等邊三角形得:△ABC是等邊三角形,由此可計(jì)算邊長(zhǎng)為6cm,根據(jù)等腰三角形三線合一的性質(zhì)得中線AD是高線和角平分線,所以可以求得CD的長(zhǎng),由外角定理證明∠CDE=∠E,所以CE=CD=3cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)投入13800元資金購(gòu)進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)和銷售價(jià)如表所示:

類別/單價(jià)

成本價(jià)

銷售價(jià)(元/箱)

24

36

33

48


(1)該商場(chǎng)購(gòu)進(jìn)甲、乙兩種礦泉水各多少箱?
(2)全部售完500箱礦泉水,該商場(chǎng)共獲得利潤(rùn)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列定理有逆定理的是( )

A. 直角都相等 B. 同旁內(nèi)角互補(bǔ),兩直線平行

C. 對(duì)頂角相等 D. 全等三角形的對(duì)應(yīng)角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.

探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC.

應(yīng)用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片ABCD沿對(duì)角線BD折疊,使點(diǎn)A落在平面上的F點(diǎn)處,DF交BC于點(diǎn)E.

(1)求證:△DCE≌△BFE;

(2)若CD=2,∠ADB=30°,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用配方法解一元二次方程x2+2x-5=0,此方程可變形為(

A.x-12=6B.x+12=6C.x+12=4D.x-12=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列六種說(shuō)法正確的個(gè)數(shù)是( )
①無(wú)限小數(shù)都是無(wú)理數(shù);
②正數(shù)、負(fù)數(shù)統(tǒng)稱實(shí)數(shù);
③無(wú)理數(shù)的相反數(shù)還是無(wú)理數(shù);
④無(wú)理數(shù)與無(wú)理數(shù)的和一定還是無(wú)理數(shù);
⑤無(wú)理數(shù)與有理數(shù)的和一定是無(wú)理數(shù);
⑥無(wú)理數(shù)與有理數(shù)的積一定仍是無(wú)理數(shù).
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)平面內(nèi)一點(diǎn)到等邊三角形中心的距離為d,等邊三角形的內(nèi)切圓半徑為r,外接圓半徑為R .對(duì)于一個(gè)點(diǎn)與等邊三角形,給出如下定義:滿足rdR的點(diǎn)叫做等邊三角形的中心關(guān)聯(lián)點(diǎn).在平面直角坐標(biāo)系xOy中,等邊△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,2),B(﹣,﹣1),C(,﹣1).

(1)已知點(diǎn)D(2,2),E,1),F,﹣1).在D,EF中,是等邊△ABC的中心關(guān)聯(lián)點(diǎn)的是 ;

(2)如圖1,過(guò)點(diǎn)A作直線交x軸正半軸于M,使∠AMO=30°.

①若線段AM上存在等邊△ABC的中心關(guān)聯(lián)點(diǎn)Pm,n),求m的取值范圍;

②將直線AM向下平移得到直線y=kx+b,當(dāng)b滿足什么條件時(shí),直線y=kx+b總存在等邊△ABC的中心關(guān)聯(lián)點(diǎn);(直接寫出答案,不需過(guò)程)

(3)如圖2,點(diǎn)Q為直線y=﹣1上一動(dòng)點(diǎn),⊙Q的半徑為.當(dāng)Q從點(diǎn)(﹣4,﹣1)出發(fā),以每秒1個(gè)單位的速度向右移動(dòng),運(yùn)動(dòng)時(shí)間為t秒.是否存在某一時(shí)刻t,使得⊙Q上所有點(diǎn)都是等邊△ABC的中心關(guān)聯(lián)點(diǎn)?如果存在,請(qǐng)直接寫出所有符合題意的t的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是由射線AB,BC,CD,DE,EA組成的平面圖形,則∠1+∠2+∠3+∠4+∠5=

查看答案和解析>>

同步練習(xí)冊(cè)答案