已知:如圖,AF為△ABC的角平分線,以BC為直徑的圓與邊AB交于點(diǎn)D,點(diǎn)E為弧BD的中點(diǎn),連接CE交AB于H,AH=AC.
(1)求證:AC與⊙O相切;
(2)若AC=6,AB=10,求EC的長(zhǎng).
精英家教網(wǎng)
(1)證明:連接BE
∵BC為直徑∴∠E=90°,
∴∠EBH+∠EHB=90°,
∵AH=AC,AF為△ABC的角平分線,
∴∠AHC=∠ACH,
∵∠AHC=∠EHB,
∴∠EHB=∠ACH,
∵點(diǎn)E為弧BD的中點(diǎn),
∴∠ECB=∠DBE,
∴∠ECB+∠ACH=90°,
∴AC是⊙O的切線;

精英家教網(wǎng)

(2)∵AC是⊙O的切線,
∴∠ACB=90°,
∵AC=6,AB=10,
∴BC=8,
∵AH=AC,
∴BH=4,
又∵∠ECB=∠DBE,∠E為公共角,
∴△BEH△CEB,
BE
EC
=
BH
CB
=
4
8
=
1
2

∴在Rt△EBC中,可得EC2+(
1
2
EC)2=BC2
,
∴EC=
16
5
5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AF為△ABC的角平分線,以BC為直徑的圓與邊AB交于點(diǎn)D,點(diǎn)E為弧BD的中點(diǎn),連接CE交AB于H,AH=AC.
(1)求證:AC與⊙O相切;
(2)若AC=6,AB=10,求EC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,BD為⊙O的直徑,BC為弦,A為BC弧中點(diǎn),AF∥BC交DB的延長(zhǎng)線于點(diǎn)F,AD交BC于精英家教網(wǎng)點(diǎn)E,AE=2,ED=4.
(1)求證:AF是⊙O的切線;
(2)求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,AF為△ABC的角平分線,以BC為直徑的圓與邊AB交于點(diǎn)D,點(diǎn)E為弧BD的中點(diǎn),連接CE交AB于H,AH=AC.
(1)求證:AC與⊙O相切;
(2)若AC=6,AB=10,求EC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年北京市石景山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

已知:如圖,AF為△ABC的角平分線,以BC為直徑的圓與邊AB交于點(diǎn)D,點(diǎn)E為弧BD的中點(diǎn),連接CE交AB于H,AH=AC.
(1)求證:AC與⊙O相切;
(2)若AC=6,AB=10,求EC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案