【題目】如圖1,四邊形中,,,,點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度向點(diǎn)運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過點(diǎn)于點(diǎn),連接于點(diǎn),連接,設(shè)運(yùn)動(dòng)時(shí)間為.

(1)連接、,當(dāng)為何值時(shí),四邊形為平行四邊形;

(2)求出點(diǎn)的距離;

(3)如圖2,將沿翻折,得,是否存在某時(shí)刻,使四邊形為菱形,若存在,求的值;若不存在,請(qǐng)說明理由

【答案】(1)當(dāng)時(shí),四邊形為平行四邊形;(2)點(diǎn)的距離(3)存在,,使四邊形為菱形.

【解析】

1)先判斷出四邊形CNPD為矩形,然后根據(jù)四邊形為平行四邊形得,即可求出t值;

2)設(shè)點(diǎn)的距離,利用勾股定理先求出AC,然后根據(jù)面積不變求出點(diǎn)的距離;

3)由NPAD,QP=PK,可得當(dāng)PM=PA時(shí)有四邊形AQMK為菱形,列出方程6-t-2t=8-6-t),求解即可.

解:(1)根據(jù)題意可得,

∵在四邊形ABCD中,ADBC,∠ADC=90°,NPAD于點(diǎn)P,

∴四邊形CNPD為矩形,

∵四邊形為平行四邊形,

,

解得:

∴當(dāng)時(shí),四邊形為平行四邊形;

(2)設(shè)點(diǎn)的距離,

中,

,

中,

∴點(diǎn)的距離

(3)存在. 理由如下:

∵將沿翻折得

,

∴當(dāng)時(shí)有四邊形為菱形,

解得,

,使四邊形為菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,ADBC,ABC=90°,AB=12,AD=4,BC=9,點(diǎn)PAB上一動(dòng)點(diǎn).若△PAD與△PBC是相似三角形,則滿足條件的點(diǎn)P的個(gè)數(shù)有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△OAB中,OA=4,AB=5,點(diǎn)C在OA上,AC=1,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(shù)(k≠0)的圖象經(jīng)過圓心P,則k=________________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)積極倡導(dǎo)陽光體育運(yùn)動(dòng),提高中學(xué)生身體素質(zhì),開展跳繩比賽,下表為該校6140人參加跳繩比賽的情況,若標(biāo)準(zhǔn)數(shù)量為每人每分鐘100個(gè).

1)求6140人一分鐘內(nèi)平均每人跳繩多少個(gè)?

2)規(guī)定跳繩超過標(biāo)準(zhǔn)數(shù)量,每多跳1個(gè)繩加3分;規(guī)定跳繩未達(dá)到標(biāo)準(zhǔn)數(shù)量,每少跳1個(gè)繩,扣1分,若班級(jí)跳繩總積分超過250分,便可得到學(xué)校的獎(jiǎng)勵(lì),通過計(jì)算說明61班能否得到學(xué)校獎(jiǎng)勵(lì)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象與直線交于點(diǎn).

(1)求的值;

(2)已知點(diǎn),過點(diǎn)作平行于軸的直線,交直線于點(diǎn),過點(diǎn)作平行于軸的直線,交函數(shù)的圖象于點(diǎn).

①當(dāng)時(shí),判斷線段的數(shù)量關(guān)系,并說明理由;

②若,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D、E分別在ABC的邊ACBC上,∠C=90°,DEAB,且3DE=2AB,AE=13,BD=9,那么AB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,A=640,ABC和∠ACD的平分線交于點(diǎn)A1,得∠A1;∠A1BC和∠A1CD的平分線交于點(diǎn)A2,得∠A2;∠A2BC和∠A2CD的平分線交于點(diǎn)A3,則∠A5= ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形,AC與BD,相交于點(diǎn)O,點(diǎn)E、F是直線AD上兩動(dòng)點(diǎn),且AE=DF,CF所在直線與對(duì)角線BD所在直線交于點(diǎn)G,連接AG,直線AG交BE于點(diǎn)H.

(1)如圖1,當(dāng)點(diǎn)E、F在線段AD上時(shí),求證:∠DAG=∠DCG;

(2)如圖1,猜想AG與BE的位置關(guān)系,并加以證明;

(3)如圖2,在(2)條件下,連接HO,試說明HO平分∠BHG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,為邊在數(shù)軸的上方作正方形ABCD.動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長度的速度沿?cái)?shù)軸正方向勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長度的速度向點(diǎn)勻速運(yùn)動(dòng),到達(dá)點(diǎn)后再以同樣的速度沿?cái)?shù)軸正方向勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為.

(1)若點(diǎn)在線段.上運(yùn)動(dòng),當(dāng)t為何值時(shí),?

(2)若點(diǎn)在線段上運(yùn)動(dòng),連接,當(dāng)t為何值時(shí),三角形的面積等于正方形面積的?

(3)在點(diǎn)和點(diǎn)運(yùn)動(dòng)的過程中,當(dāng)為何值時(shí),點(diǎn)與點(diǎn)恰好重合?

(4)當(dāng)點(diǎn)在數(shù)軸上運(yùn)動(dòng)時(shí),是否存在某-時(shí)刻t,使得線段的長為,若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案