(2010•宜賓)將半徑為5的圓(如圖1)剪去一個圓心角為n°的扇形后圍成如圖2所示的圓錐,則n的值等于______.

【答案】分析:易求得圓錐的底面周長,那么就求得了扇形的弧長,利用弧長公式即可求得扇形的圓心角.讓圓周角減去所求得的角即可.
解答:解:圓錐的底面周長為:2×3π=6π;
=6π,
∴圍成扇形的圓心角為:n=216,
∴要求的n=360-216=144°.
點評:用到的知識點為:圓錐的弧長等于底面周長.注意本題是求剪去的扇形的圓心角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年3月廣東省廣州市第四十七中學九年級(下)月考數(shù)學試卷(解析版) 題型:解答題

(2010•宜賓)將直角邊長為6的等腰Rt△AOC放在如圖所示的平面直角坐標系中,點O為坐標原點,點C、A分別在x、y軸的正半軸上,一條拋物線經過點A、C及點B(-3,0).
(1)求該拋物線的解析式;
(2)若點P是線段BC上一動點,過點P作AB的平行線交AC于點E,連接AP,當△APE的面積最大時,求點P的坐標;
(3)在第一象限內的該拋物線上是否存在點G,使△AGC的面積與(2)中△APE的最大面積相等?若存在,請求出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2010•宜賓)將直角邊長為6的等腰Rt△AOC放在如圖所示的平面直角坐標系中,點O為坐標原點,點C、A分別在x、y軸的正半軸上,一條拋物線經過點A、C及點B(-3,0).
(1)求該拋物線的解析式;
(2)若點P是線段BC上一動點,過點P作AB的平行線交AC于點E,連接AP,當△APE的面積最大時,求點P的坐標;
(3)在第一象限內的該拋物線上是否存在點G,使△AGC的面積與(2)中△APE的最大面積相等?若存在,請求出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年四川省宜賓市中考數(shù)學試卷(解析版) 題型:解答題

(2010•宜賓)將直角邊長為6的等腰Rt△AOC放在如圖所示的平面直角坐標系中,點O為坐標原點,點C、A分別在x、y軸的正半軸上,一條拋物線經過點A、C及點B(-3,0).
(1)求該拋物線的解析式;
(2)若點P是線段BC上一動點,過點P作AB的平行線交AC于點E,連接AP,當△APE的面積最大時,求點P的坐標;
(3)在第一象限內的該拋物線上是否存在點G,使△AGC的面積與(2)中△APE的最大面積相等?若存在,請求出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圓》(15)(解析版) 題型:解答題

(2010•宜賓)將半徑為5的圓(如圖1)剪去一個圓心角為n°的扇形后圍成如圖2所示的圓錐,則n的值等于______.

查看答案和解析>>

同步練習冊答案