【題目】如圖,在⊙O中,直徑AB與弦CD相交于點(diǎn)P,∠CAB=40°,∠APD=65°.
(1)求∠B的大。
(2)已知圓心0到BD的距離為3,求AD的長(zhǎng).

【答案】
(1)解:∵∠CAB=∠CDB(同弧所對(duì)的圓周角相等),∠CAB=40°,

∴∠CDB=40°;

又∵∠APD=65°,

∴∠BPD=115°;

∴在△BPD中,

∴∠B=180°﹣∠CDB﹣∠BPD=25°


(2)解:過(guò)點(diǎn)O作OE⊥BD于點(diǎn)E,則OE=3.

∵AB是直徑,

∴AD⊥BD(直徑所對(duì)的圓周角是直角);

∴OE∥AD;

又∵O是AB的中點(diǎn),

∴OE是△ABD的中位線,

∴AD=2OE=6.


【解析】(1)由同弧所對(duì)的圓周角相等求得∠CAB=∠CDB=40°,然后根據(jù)平角是180°求得∠BPD=115°;最后在△BPD中依據(jù)三角形內(nèi)角和定理求∠B即可;(2)過(guò)點(diǎn)O作OE⊥BD于點(diǎn)E,則OE=3.根據(jù)直徑所對(duì)的圓周角是直角,以及平行線的判定知OE∥AD;又由O是直徑AB的半徑可以判定O是AB的中點(diǎn),由此可以判定OE是△ABD的中位線;最后根據(jù)三角形的中位線定理計(jì)算AD的長(zhǎng)度.
【考點(diǎn)精析】關(guān)于本題考查的三角形的內(nèi)角和外角和三角形中位線定理,需要了解三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答
(1)如圖1,正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,CD上,∠EAF=45°,延長(zhǎng)CD到點(diǎn)G,使DG=BE,連結(jié)EF,AG.求證:EF=FG.

(2)如圖,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點(diǎn)M,N在邊BC上,且∠MAN=45°,若BM=1,CN=3,求MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,連接AC.若∠A=22.5°,CD=8cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,PD切⊙O于點(diǎn)D,過(guò)點(diǎn)B作BE垂直于PD,交PD的延長(zhǎng)線于點(diǎn)C,連接AD并延長(zhǎng),交BE于點(diǎn)E. 求證:AB=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,ACB=90°,A=30°,AB的垂直平分線分別交ABAC于點(diǎn)D,E.

(1)求證:AE=2CE;

(2)連接CD,請(qǐng)判斷BCD的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】低碳環(huán)保,綠色出行的概念得到廣大群眾的接受,越來(lái)越多的人喜歡選擇騎自行車作為出行工具.小軍和爸爸同時(shí)騎車去圖書(shū)館,爸爸先以150/分的速度騎行一段時(shí)間,休息了5分鐘,再以m/分的速度到達(dá)圖書(shū)館.小軍始終以同一速度騎行,兩人騎行的路程為y()與時(shí)間x(分鐘)的關(guān)系如圖.請(qǐng)結(jié)合圖象,解答下列問(wèn)題:

(1)填空:a=________;b=________;m=________.

(2)若小軍的速度是 120 /分,求小軍第二次與爸爸相遇時(shí)距圖書(shū)館的距離.

(3)(2)的條件下,爸爸自第二次出發(fā)后,騎行一段時(shí)間后與小軍相距100 米,此時(shí) 小軍騎行的時(shí)間為________分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,BD、BE分別是△ABC的高線和角平分線,點(diǎn)F在CA的延長(zhǎng)線上,F(xiàn)H⊥BE交BD于點(diǎn)G,交BC于點(diǎn)H.下列結(jié)論:①∠DBE=∠F;②∠BEF=(∠BAF+∠C); ③∠FGD=∠ABE+∠C;④∠F=(∠BAC﹣∠C);其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度)

(1)畫(huà)出△ABC向下平移4個(gè)單位,再向左平移1個(gè)單位得到的△A1B1C1 , 并直接寫(xiě)出C1點(diǎn)的坐標(biāo);
(2)作出△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)90°后得到的△A2B2C2 , 并直接寫(xiě)出C2點(diǎn)的坐標(biāo);
(3)作出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A3B3C3 , 并直接寫(xiě)出B3的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,OP∠MON的平分線,請(qǐng)你利用該圖形畫(huà)一對(duì)以OP所在直線為對(duì)稱軸的全等三角形,并將添加的全等條件標(biāo)注在圖上.

請(qǐng)你參考這個(gè)作全等三角形的方法,解答下列問(wèn)題:

(1)如圖2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC∠BCA的平分線,AD、CE相交于點(diǎn)F,求∠EFA的度數(shù);

(2)在(1)的條件下,請(qǐng)判斷FEFD之間的數(shù)量關(guān)系,并說(shuō)明理由;

(3)如圖3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他條件不變,試問(wèn)在(2)中所得結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案