已知平面直角坐標(biāo)系中三點(diǎn)的坐標(biāo)分別為:A(4、5),B(-2,2),C(3,0)
(1)畫出它以原點(diǎn)O為對(duì)稱中心的△A′B′C′;
(2)寫出 A′,B′,C′三點(diǎn)的坐標(biāo).

【答案】分析:(1)分別找到A、B、C三點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn),然后順次連接可得出△A′B′C′;
(2)結(jié)合直角坐標(biāo)系可得出 A′,B′,C′三點(diǎn)的坐標(biāo).
解答:解:(1)所作圖形如下:


(2)結(jié)合直角坐標(biāo)系可得,點(diǎn)A'坐標(biāo)為(-4,-5),點(diǎn)B'坐標(biāo)為(2,-2),點(diǎn)C'坐標(biāo)為(-3,0).
點(diǎn)評(píng):此題考查了旋轉(zhuǎn)作圖的知識(shí),根據(jù)對(duì)稱中心對(duì)稱點(diǎn)平分對(duì)應(yīng)點(diǎn)連線,得到各點(diǎn)的對(duì)應(yīng)點(diǎn)是解答本題的關(guān)鍵,難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、已知平面直角坐標(biāo)系中兩點(diǎn)A(-1,O)、B(1,2).連接AB,平移線段AB得到線段A1B1,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)為(2,-1),則B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系中三個(gè)頂點(diǎn)的坐標(biāo)為D(1,-4),E(1,2),F(xiàn)(3,0),那么,△DEF的面積為(  )
A、6B、7C、8D、9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平面直角坐標(biāo)系中三個(gè)點(diǎn)A(-8,0)、B(2,0)、C(
163
,0)
,精英家教網(wǎng)O為坐標(biāo)原點(diǎn).以AB為直徑的⊙M與y軸的負(fù)半軸交于點(diǎn)D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過(guò)點(diǎn)A作AE⊥CD,垂足為E,且AE與⊙M相交于點(diǎn)F,求一個(gè)一元二次方程,使它的兩個(gè)根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、已知平面直角坐標(biāo)系中兩點(diǎn)A(-2,3),B(-3,1),連接AB,平移線段AB得到線段A1B1,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)為(3,4),則點(diǎn)B1的坐標(biāo)為
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)分別在x軸、y軸上,其中C,D兩點(diǎn)的坐標(biāo)分別為(4,0),(0,-3).兩動(dòng)點(diǎn)P、Q分別從A、C同時(shí)出發(fā),點(diǎn)P以每秒1個(gè)單位的速度沿線段AB向終點(diǎn)B運(yùn)動(dòng),點(diǎn)Q以每秒2個(gè)單位的速度沿折線CDA向終點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒.
(1)求菱形ABCD的高h(yuǎn)和面積s的值;
(2)當(dāng)Q在CD邊上運(yùn)動(dòng),x為何值時(shí)直線PQ將菱形ABCD的面積分成1:2兩部分;
(3)設(shè)四邊形APCQ的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(要寫出x的取值范圍);在P、Q運(yùn)動(dòng)的整個(gè)過(guò)程中是否存在y的最大值?若存在,求出這個(gè)最大值,并指出此時(shí)P、Q的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案