【題目】如圖,在RtABC中,∠ACB90°

(1)請用尺規(guī)作圖法,作∠ACB的平分線CD,交AB于點D;(不要求寫作法,保留作圖痕跡)

(2)(1)的條件下,過點D分別作 DEAC于點E,DFBC于點F.求證:四邊形CEDF是正方形.

【答案】1)見解析;(2)見解析

【解析】

1)以C為圓心作圓弧,交AC,BC邊于兩點,在以這兩點為圓心作弧相交于一點,然后連接C和這點,與AB交于點D,則AD∠ACB的角平分線;

2)先證四邊形CEDF為矩形,再由角平分線得DE=DF,即可證明四邊形CEDF為正方形.

1)以C為圓心作圓弧,交AC,BC邊于兩點,在以這兩點為圓心作弧相交于一點,然后連接C和這點,與AB交于點D,則AD∠ACB的角平分線,如圖所示:

2)∵DEACDFBC,

∴∠DEC=∠DFC=90°

∵∠ACB=90°,

四邊形CEDF為矩形,

∵CD平分∠ACB,

∴DE=DF

四邊形CEDF為正方形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】將兩個等腰RtADE、RtABC如圖放置在一起,其中∠DAE=∠ABC90°.點EAB上,ACDE交于點H,連接BHCE,且∠BCE15°,下列結(jié)論:①AC垂直平分DE;②△CDE為等邊三角形;③tanBCD;④;正確的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,點E,F(xiàn)BD上,BE=DF.

(1)求證:AE=CF;

(2)若AB=6,∠COD=60°,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD的頂點A、B在反比例函數(shù)yk0,x0)的圖象上,點A、B橫坐標分別為26,對角線BDx軸,若菱形ABCD的面積為40,則k的值為(  )

A.15B.10C.D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為落實“綠水青山就是金山銀山”的發(fā)展理念,某縣政府部門決定,招標一工程隊負責完成一座水庫的土方施工任務.該工程隊有A,B兩種型號的挖掘機,已知1A型和2B型挖掘機同時施工1小時共挖土80立方米,2A型和3B型挖掘機同時施工1小時共挖土140立方米.每臺A型挖掘機一個小時的施工費用是350元,每臺B型挖掘機一個小時的施工費用是200元.

1)分別求每臺A型,B型挖掘機一小時各挖土多少立方米?

2)若A型和B型挖掘機共10臺同時施工4小時,至少完成1360立方米的挖土量,且總費用不超過14000元.問施工時有哪幾種調(diào)配方案?且指出哪種調(diào)配方案的施工費用最低,最低費用多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知拋物線y-x2bxcx軸交于點A(-1,0)B(3,0),與y軸交于點C

(1)求拋物線的解析式;

(2)D的坐標為(1,0),點P為第一象限內(nèi)拋物線上的一點,求四邊形BDCP面積的最大值;

(3)如圖②,動點M從點O出發(fā),以每秒2個單位長度的速度向點B運動,到達點B時停止運動,且不與點O、B重合.設運動時間為t秒,過點Mx軸的垂線交拋物線于點N,交線段BC于點Q,連接OQ,是否存在t值,使得△BOQ為等腰三角形?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司購進一批新產(chǎn)品進行銷售,已知該產(chǎn)品的進貨單價為8/件,該公司對這批新產(chǎn)品上市后的銷售情況進行了跟蹤調(diào)查.銷售過程中發(fā)現(xiàn),該產(chǎn)品每月的銷售量(萬件)與銷售單價()之間的關(guān)系滿足下表.

銷售單價(元/件)

10

12

14

15

每月銷售量(萬件)

40

36

32

30

1)請你從所學過的一次函數(shù)、二次函數(shù)和反比例函數(shù)三個模型中確定哪種函數(shù)能比較恰當?shù)乇硎?/span>的變化規(guī)律,并求出之間的函數(shù)關(guān)系式;

2)當銷售單價為多少元時,該產(chǎn)品每月獲得的利潤為240萬元?

3)如果該產(chǎn)品每月的進貨成本不超過160萬元,那么當銷售單價為多少元時,該產(chǎn)品每月獲得的利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線x軸交于點A、B(點A位于點B的左側(cè)),與y軸交于點C,CDx軸交拋物線于點D,M為拋物線的頂點.

1)求點A、B、C的坐標;

2)設動點N(-2,n),求使MNBN的值最小時n的值;

3P是拋物線上一點,請你探究:是否存在點P,使以P、A、B為頂點的三角形與△ABD相似,(△PAB與△ABD不重合)?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了了解九年級學生“一分鐘跳繩”體育測試項目情況,隨機抽取了九年級部分學生組成測試小組進行調(diào)查測試,并對這部分學生“一分鐘跳繩”測試的成績按AB,CD四個等級進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.

1)本次隨機調(diào)查抽樣的樣本容量為 

2D等級所對扇形的圓心角為  °,并將條形統(tǒng)計圖補充完整;

3)如果該學校九年級共有400名學生,那么根據(jù)以上樣本統(tǒng)計全校九年級“一分鐘跳繩”測試成績?yōu)?/span>A等級的學生有  人;

4)現(xiàn)有測試成績?yōu)?/span>A等級,且表現(xiàn)比較突出的兩男兩女共4名學生,計劃從這4名學生中隨機抽取2名同學作平時訓練經(jīng)驗交流,請用列表法或畫樹狀圖的方法,求所選兩位同學恰好是11女的概率.

查看答案和解析>>

同步練習冊答案