【題目】某超市銷(xiāo)售一種成本為40千克的商品,若按50千克銷(xiāo)售,一個(gè)月可售出500千克,現(xiàn)打算漲價(jià)銷(xiāo)售,據(jù)市場(chǎng)調(diào)查,漲價(jià)x元時(shí),月銷(xiāo)售量為m千克,mx的一次函數(shù),部分?jǐn)?shù)據(jù)如下表:

觀察表中數(shù)據(jù),直接寫(xiě)出mx的函數(shù)關(guān)系式:_______________:當(dāng)漲價(jià)5元時(shí),計(jì)算可得月銷(xiāo)售利潤(rùn)是___________元;

當(dāng)售價(jià)定多少元時(shí),會(huì)獲得月銷(xiāo)售最大利潤(rùn),求出最大利潤(rùn).

【答案】(1),6750;(2)70元,最大利潤(rùn)為9000元.

【解析】

1)根據(jù)表格數(shù)據(jù)得出mx的函數(shù)關(guān)系式,將x=55代入求出即可;

2)根據(jù)總利潤(rùn)=每千克利潤(rùn)×數(shù)量列出函數(shù)關(guān)系式求解即可.

解:設(shè)mx的函數(shù)關(guān)系式為,

由題意可得,,

解得,,

mx的函數(shù)關(guān)系式為,

當(dāng)時(shí),,

則月銷(xiāo)售利潤(rùn)是;

故答案為6750;

解:設(shè)月銷(xiāo)售的利潤(rùn)為y,由題意可得,

,

因此,當(dāng)時(shí),,

此時(shí),售價(jià)為,

所以,當(dāng)售價(jià)定為70元時(shí),會(huì)獲得月銷(xiāo)售最大利潤(rùn),最大利潤(rùn)為9000元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在平行四邊形ABCD的邊AB,CD上截取AF,CE,使得AF=CE,連接EF,點(diǎn)M,N是線段EF上兩點(diǎn),且EM=FN,連接AN,CM.

(1)求證:AFN≌△CEM;

(2)若∠CMF=107°,CEM=72°,求∠NAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,完成任務(wù):

自相似圖形

定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務(wù):

(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為   ;

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過(guò)點(diǎn)C作CDAB于點(diǎn)D,則CD將ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   ;

(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長(zhǎng)AD=a,寬AB=b(a>b).

請(qǐng)從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)教師將班中留守學(xué)生的學(xué)習(xí)狀況分成四個(gè)等級(jí),制成不完整的統(tǒng)計(jì)圖:

(1)該班有多少名留守學(xué)生?并將該條形統(tǒng)計(jì)圖補(bǔ)充完整.

(2)數(shù)學(xué)教師決定從等級(jí)的留守學(xué)生中任選兩名進(jìn)行數(shù)學(xué)學(xué)習(xí)幫扶,使用列表或畫(huà)樹(shù)狀圖的方法,求出所選幫扶的兩名留守學(xué)生來(lái)自同一等級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,每個(gè)小正方形的邊長(zhǎng)為1

1)求四邊形ABCD的面積和周長(zhǎng);

2)∠BCD是直角嗎?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx3過(guò)A10),B(﹣30),直線AD交拋物線于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為﹣2,點(diǎn)Pm,n)是線段AD上的動(dòng)點(diǎn).

1)求直線AD及拋物線的解析式;

2)過(guò)點(diǎn)P的直線垂直于x軸,交拋物線于點(diǎn)Q,求線段PQ的長(zhǎng)度lm的關(guān)系式,m為何值時(shí),PQ最長(zhǎng)?

3)在平面內(nèi)是否存在整點(diǎn)(橫、縱坐標(biāo)都為整數(shù))R,使得P,Q,D,R為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫(xiě)出點(diǎn)R的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】算24點(diǎn)游戲是一種使用撲克牌來(lái)進(jìn)行的益智類(lèi)游戲,游戲內(nèi)容是:從一副撲克牌中抽去大小王剩下52張,任意抽取4張牌,把牌面上的數(shù)運(yùn)用你所學(xué)過(guò)的加、減、乘、除、乘方運(yùn)算得出24.每張牌都必須使用一次,但不能重復(fù)使用.

(1)如圖1,在玩“24點(diǎn)”游戲時(shí),小明抽到以下4張牌:

請(qǐng)你幫他寫(xiě)出運(yùn)算結(jié)果為24的算式:(寫(xiě)出2個(gè));   、   ;

(2)如圖2,如果、表示正, 表示負(fù),J表示11點(diǎn),Q表示12點(diǎn).請(qǐng)你用下列4張牌表示的數(shù)寫(xiě)出運(yùn)算結(jié)果為24的算式(寫(xiě)出1個(gè)):   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了組織一次球類(lèi)對(duì)抗賽,在本校隨機(jī)抽取了若干名學(xué)生,對(duì)他們每個(gè)人最喜歡的一項(xiàng)球類(lèi)運(yùn)動(dòng)進(jìn)行了統(tǒng)計(jì),將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你依據(jù)以上的信息回答下列問(wèn)題:

1)求本次被調(diào)查的學(xué)生人數(shù);

2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

3)若全校有4000名學(xué)生,請(qǐng)你估計(jì)該校最喜歡籃球和足球運(yùn)動(dòng)的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有正方形ABCD和一個(gè)以O(shè)為直角頂點(diǎn)的三角板,移動(dòng)三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點(diǎn)M,N.

(1如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是__________________;

(2如圖2,若點(diǎn)O正方形的中心(即兩對(duì)角線的交點(diǎn),則(1中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由;

(3如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界,當(dāng)OM=ON時(shí),請(qǐng)?zhí)骄奎c(diǎn)O在移動(dòng)過(guò)程中可形成什么圖形?

(4如圖4是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時(shí),請(qǐng)你就“點(diǎn)O的位置在各種情況下(含外部移動(dòng)所形成的圖形”提出一個(gè)正確的結(jié)論.(不必說(shuō)理

查看答案和解析>>

同步練習(xí)冊(cè)答案