閱讀材料,解答問題.
當(dāng)拋物線的表達(dá)式中含有字母系數(shù)時(shí),隨著系數(shù)中的字母取值的不同,拋物線的頂點(diǎn)坐標(biāo)出將發(fā)生變化.
例如:由拋物線y=x2-2mx+m2+2m-1,…①
有y=(x-m)2+2m-1,…②
∴拋物線的頂點(diǎn)坐標(biāo)為(m,2m-1)
即x=m …③
y=2m-1 …④
當(dāng)m的值變化時(shí),x、y的值也隨之變化,因而y值也隨x值的變化而變化
將③代入④,得y=2x-1…⑤
可見,不論m取任何實(shí)數(shù),拋物線頂點(diǎn)的縱坐標(biāo)y和橫坐標(biāo)x都滿足關(guān)系式y(tǒng)=2x-1.
解答問題:
(1)在上述過程中,由①到②所用的數(shù)學(xué)方法是
 
,由③、④到⑤所用到的數(shù)學(xué)方法是
 

(2)根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-3m+1頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間的表達(dá)式.
分析:(1)配方法是指把含自變量的項(xiàng)配成完全平方式,代入消元法用含一個(gè)字母的式子代替另外一個(gè)字母;
(2)用配方法把拋物線的一般式寫成頂點(diǎn)式,從而得出頂點(diǎn)坐標(biāo),用x代替m,可得頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間的表達(dá)式.
解答:解:(1)配方法,代入消元法.
(2)變形配方得y=x2-2mx+m2+m2-3m+1=(x-m)2+m2-3m+1,
∴拋物線的頂點(diǎn)坐標(biāo)為(m,m2-3m+1),
x=m
y=m2-3m+1
,
代入消元得y=x2-3x+1.
點(diǎn)評:本題考查了拋物線解析式變形的重要方法:配方法,再考慮用消元法得出頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間的表達(dá)式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

24、閱讀材料,解答問題.
例.用圖象法解一元二次不等式:x2-2x-3>0.
解:設(shè)y=x2-2x-3,則y是x的二次函數(shù).∵a=1>0,∴拋物線開口向上.
又∵當(dāng)y=0時(shí),x2-2x-3=0,解得x1=-1,x2=3.∴由此得拋物線y=x2-2x-3的大致圖象如圖所示.觀察函數(shù)圖象可知:當(dāng)x<-1或x>3時(shí),y>0.∴x2-2x-3>0的解集是:x<-1或x>3.
(1)觀察圖象,直接寫出一元二次不等式:x2-2x-3<0的解集是
-1<x<3

(2)仿照上例,用圖象法解一元二次不等式:x2-5x+6<0.(畫出大致圖象).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

25、閱讀材料并解答問題:
我們已經(jīng)知道,完全平方公式可以用平面幾何圖形的面積來表示,實(shí)際上還有一些代數(shù)等式也可以用這種形式表示.例如:(2a+b)(a+b)=2a2+3ab+b2就可以用圖①或圖②等圖形的面積來表示

(1)請寫出圖③所表示的等式:
(2a+b)(a+2b)=2a2+5ab+2b2

(2)如圖所示的長方形或正方形三類卡片各有若干張,請你用這些卡片,拼成一個(gè)長方形或正方形圖形.要求:所拼圖形中每類卡片都要有,卡片之間不能重疊,畫出示意圖,并寫出你發(fā)現(xiàn)的等式.(請仿照上圖在幾何圖形上標(biāo)出有關(guān)數(shù)量).

你發(fā)現(xiàn)的等式是
(a+b)(a+b)=a2+2ab+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

27、閱讀材料并解答問題:

如圖①,將6個(gè)小長方形(或正方形)既無空隙,又不重疊地拼成一個(gè)大的長方形,根據(jù)圖示尺寸,它的面積既可以表示為(2a+b)(a+b),又可以表示為2a2+3ab+b2,因此,我們可以得到一個(gè)等式:(2a+b)(a+b)=2a2+3ab+b2
(1)請寫出圖②所表示的等式:
(a+2b)(2a+b)=2a2+5ab+2b2

(2)試畫出一個(gè)幾何圖形,使它的面積能表示:(a+b)(a+3b)=a2+4ab+3b2(請仿照圖①或圖②在幾何圖形上標(biāo)出有關(guān)數(shù)量).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料,解答問題:為解方程(x2-1)2-5(x2-1)+4=0,我們可以將x2-1視為一個(gè)整體,然后設(shè)x2-1=y原方程可化為y2-5y+4=0,解此方程得y1=1,y2=4.當(dāng)y=1時(shí),x2-1=1,∴x=±
2
;當(dāng)y=4時(shí),x2-1=4,∴x=±
5
,∴原方程的解為x1=
2
,x2=-
2
,x3=
5
,x4=-
5

(1)填空:在原方程得到方程y2-5y+4=0的過程中,利用了
換元
換元
法達(dá)到了降次的目的,體現(xiàn)了
轉(zhuǎn)化
轉(zhuǎn)化
的數(shù)學(xué)思想
(2)解方程:(x2-x)2-8(x2-x)+12=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料,解答問題:
在數(shù)學(xué)課上,李老師和同學(xué)們一起探討角平分線的作法時(shí),李老師用直尺和圓規(guī)作角的平分線,作法如下:
①如圖1,在OA和OB上分別截取OD、OE,使OD=OE;
②分別以D、E為圓心,以大于
12
DE
的長為半徑作弧,兩弧交于點(diǎn)C;
③作射線OC,則OC就是∠AOB的平分線.

小聰只帶了直角三角板,他發(fā)現(xiàn)利用三角板也可以作角平分線,作法如下:
①如圖2,利用三角板上的刻度,在OA和OB上
分別畫點(diǎn)M、N,使OM=ON;
②分別過點(diǎn)M、N作OM、ON的垂線,交于點(diǎn)P;
③作射線OP,則OP就是∠AOB的平分線.
小穎的身邊只有刻度尺,經(jīng)過嘗試,她發(fā)現(xiàn)利用刻度尺也可以作角平分線.
請你按要求完成下列問題:
(1)李老師用尺規(guī)作角平分線時(shí),用到的三角形全等的方法是
“SSS”
“SSS”

(2)小聰?shù)淖鞣ㄕ_嗎?請說明理由.
(3)請你幫小穎設(shè)計(jì)用刻度尺作角平分線的方法(要求:畫出圖形,并簡述過程和理由)

查看答案和解析>>

同步練習(xí)冊答案