【題目】如圖,在Rt△ABC中,∠ABC=90°,點(diǎn)M是AC的中點(diǎn),以AB為直徑做⊙O分別交AC,BM于點(diǎn)D、E.
(1)求證:∠MDE=∠MED;
(2)填空: ①若AB=6,當(dāng)DM=2AD時(shí),DE=;
②連接OD、OE,當(dāng)∠C的度數(shù)為時(shí),四邊形ODME是菱形.

【答案】
(1)證明:∵∠ABC=90°,M是AC的中點(diǎn),

∴BM=AM=MC,

∴∠A=∠ABM,

∵四邊形ABED是圓內(nèi)接四邊形,

∴∠ADE+∠ABE=180°,

又∠ADE+∠MDE=180°,

∴∠MDE=∠MBA,

同理證明:∠MED=∠A,

∴∠MDE=∠MED,


(2)4;30°
【解析】(2)①4, 由(1)可知,∠A=∠MDE,
∴DE∥AB,

∵DM=2AD,
∴DM:MA=2:3,
∴DE= AB= ×6=4.
②當(dāng)∠C=30°時(shí),四邊形ODME是菱形.
連接OD、OE,
∵OA=OD,∠A=60°,
∴△AOD是等邊三角形,
∴∠AOD=60°,
∵DE∥AB,
∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,
∴△ODE,△DEM都是等邊三角形,
∴OD=OE=EM=DM,
∴四邊形OEMD是菱形.
所以答案是:(2)①4;②30°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,連接AE,BD交于點(diǎn)O,AE與DC交于點(diǎn)M,BD與AC交于點(diǎn)N.
(1)如圖1,求證:AE=BD;
(2)如圖2,若AC=DC,在不添加任何輔助線的情況下,請(qǐng)直接寫(xiě)出圖2中四對(duì)全等的直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),直線y= x+1與拋物線y= x2+bx+c交于A,B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為4.

(1)求拋物線的解析式;
(2)拋物線y= x2+bx+c 交x軸正半軸于點(diǎn)C,橫坐標(biāo)為t的點(diǎn)P在第四象限的拋物線上,過(guò)點(diǎn)P作AB的垂線交x軸于點(diǎn)E,點(diǎn)Q為垂足,設(shè)CE的長(zhǎng)為d,求d與t之間的函數(shù)關(guān)系式,直接寫(xiě)出自變量t的取值范圍:
(3)在(2)的條件下,過(guò)點(diǎn)B作y軸的平行線交x軸于點(diǎn)D,連接DQ.當(dāng)∠AQD=3∠PQD時(shí),求點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了了解學(xué)生在家使用電腦的情況(分為“總是、較多、較少、不用”四種情況),隨機(jī)在八、九年級(jí)各抽取相同數(shù)量的學(xué)生進(jìn)行調(diào)查,繪制成部分統(tǒng)計(jì)圖如下所示.請(qǐng)根據(jù)圖中信息,回答下列問(wèn)題:
(1)九年級(jí)一共抽查了名學(xué)生,圖中的a= , “總是”對(duì)應(yīng)的圓心角為度.
(2)根據(jù)提供的信息,補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若該校九年級(jí)共有900名學(xué)生,請(qǐng)你統(tǒng)計(jì)其中使用電腦情況為“較少”的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,且點(diǎn)B與點(diǎn)C的坐標(biāo)分別為B(3,0).C(0,3),點(diǎn)M是拋物線的頂點(diǎn).

(1)求二次函數(shù)的關(guān)系式;
(2)點(diǎn)P為線段MB上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D.若OD=m,△PCD的面積為S,試判斷S有最大值或最小值?并說(shuō)明理由;
(3)在MB上是否存在點(diǎn)P,使△PCD為直角三角形?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 在同一平面直角坐標(biāo)系內(nèi)的圖象大致為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某食品廠“端午節(jié)”期間,為了解市民對(duì)肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)四種不同口味粽子的喜愛(ài)情況,對(duì)某居民區(qū)進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整). 請(qǐng)根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將不完整的條形圖補(bǔ)充完整.
(3)若居民區(qū)有6000人,請(qǐng)估計(jì)愛(ài)吃C粽的人數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將OA=6,AB=4的矩形OABC放置在平面直角坐標(biāo)系中,動(dòng)點(diǎn)M、N以每秒1個(gè)單位的速度分別從點(diǎn)A、C同時(shí)出發(fā),其中點(diǎn)M沿AO向終點(diǎn)O運(yùn)動(dòng),點(diǎn)N沿CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)了t秒時(shí),過(guò)點(diǎn)N作NP⊥BC,交OB于點(diǎn)P,連接MP.

(1)點(diǎn)B的坐標(biāo)為;用含t的式子表示點(diǎn)P的坐標(biāo)為;
(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式(0<t<6),并求當(dāng)t為何值時(shí),S有最大值?
(3)試探究:在上述運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn)T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC的 ?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一內(nèi)部裝有水的直圓柱形水桶,桶高20公分;另有一直圓柱形的實(shí)心鐵柱,柱高30公分,直立放置于水桶底面上,水桶內(nèi)的水面高度為12公分,且水桶與鐵柱的底面半徑比為2:1.今小賢將鐵柱移至水桶外部,過(guò)程中水桶內(nèi)的水量未改變,若不計(jì)水桶厚度,則水桶內(nèi)的水面高度變?yōu)槎嗌俟郑浚ā 。?/span>

A.4.5
B.6
C.8
D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案