. 以O(shè)為圓心的兩個同心圓的半徑分別為9cm和5 cm,若⊙P與這兩個圓都相切,則下列說法中正確的是(    ).

(A)⊙P的半徑一定是2cm     (B)⊙P的半徑一定是7 cm

(C) 符合條件的點P有2個   (D) ⊙P的半徑是2 cm或7cm

 

【答案】

D

 【解析】略

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

以O(shè)為圓心的兩個同心圓的半徑分別為(
3
+
2
)2
cm和(
3
-
2
)2
cm,⊙O1與這兩個圓都相切,則⊙O1的半徑是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在以O(shè)為圓心的兩個同心圓中,大圓的弦AB是小圓的切線,P為切點,如果AB=8cm,小圓半徑為3cm,那么大圓半徑為
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以O(shè)為圓心的兩個同心圓中,大圓的弦AB切小圓于點C,若∠AOB=120°,則大圓半徑R與小圓半徑r之間滿足的關(guān)系為
R=2r
R=2r

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2006•靜安區(qū)二模)如圖,在以O(shè)為圓心的兩個同心圓中,小圓的半徑為1,AB與小圓相切于點A,與大圓相交于B,大圓的弦BC⊥AB,過點C作大圓的切線交AB的延長線于D,OC交小圓于E
(1)求證:△AOB∽△BDC;
(2)設(shè)大圓的半徑為x,CD的長y,yx之間的函數(shù)解析式,并寫出定義域.
(3)△BCE能否成為等腰三角形?如果可能,求出大圓半徑;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以O(shè)為圓心的兩個同心圓中,大圓的弦AB切小圓于點C,若AB=8,圓環(huán)的面積是
16π
16π

查看答案和解析>>

同步練習冊答案