【題目】如圖(1),點(diǎn)BC、E在同一直線上

1)求證:;

2)若,于點(diǎn),于點(diǎn),請(qǐng)直接寫出圖(2)中所有與互余的角.

【答案】1)見解析;(2)∠ABF、∠ACB、∠D、∠GEC

【解析】

1)利用三角形外角的性質(zhì)即可得出結(jié)論;

2)利用BFAC可得∠A與∠ABF互余,根據(jù)∠ABC=90°可得∠A與∠ACB互余,再結(jié)合∠A=DCE可得∠A與∠D互余,最后結(jié)合GECD可得∠A與∠GEC互余.

解:(1)∵

ACE=B+BAC,

∴∠BAC=DCE;

2)∵BFAC

∴∠A+ABF=90°,

∵∠ABC=90°

∴∠ACB+A=90°,

∵∠A=DCE,∠DEC=90°,

∴∠DCE+D=90°

即∠A+D=90°,

GECD

∴∠GCE+GEC=90°,

∴∠GEC+A=90°,

故與∠A互余的角有:∠ABF、∠ACB、∠D、∠GEC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】丫頭和爸爸從家出發(fā)到大劇院觀看巴交有聲巴蜀中學(xué)新年演奏會(huì),爸爸先出發(fā),2分鐘后丫頭沿同一路線出發(fā)去追爸爸,當(dāng)丫頭追上爸爸時(shí)發(fā)現(xiàn)背包落在途中了,爸爸立即返回找背包,丫頭繼續(xù)前往大劇院,當(dāng)丫頭到達(dá)大劇院時(shí),爸爸剛好找到背包并立即前往大劇院爸爸找背包的時(shí)間不計(jì),丫頭在大劇院等了一會(huì),沒有等到爸爸,就沿同一路線返回接爸爸,最終與爸爸會(huì)合,丫頭和爸爸的速度始終不變,如圖是丫頭和爸爸兩人之間的距離與丫頭出發(fā)的時(shí)間分鐘的函數(shù)圖象,則丫頭在大劇院等了爸爸______分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點(diǎn)E、H分別在AB、AC上,已知BC=40cm,AD=30cm.

(1)求證:△AEH∽△ABC;
(2)求這個(gè)正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)課上,李老師讓同學(xué)們獨(dú)立完成課本第23頁第七題選擇題(2)如圖 1,如果 ABCDEF,那么∠BAC+ACE+CEF=(

A.180° B.270° C.360° D.540°

1)請(qǐng)寫出這道題的正確選項(xiàng);

2)在同學(xué)們都正確解答這道題后,李老師對(duì)這道題進(jìn)行了改編:如圖2,ABEF,請(qǐng)直接寫出∠BAD,∠ADE,∠DEF之間的數(shù)量關(guān)系.

3)善于思考的龍洋同學(xué)想:將圖1平移至與圖2重合(如圖3所示),當(dāng)ADED分別平分∠BAC,∠CEF時(shí),∠ACE與∠ADE之間有怎樣的數(shù)量關(guān)系?請(qǐng)你直接寫出結(jié)果,不需要證明.

4)彭敏同學(xué)又提出來了,如果像圖4這樣,ABEF,當(dāng)∠ACD=90°時(shí),∠BAC、∠CDE和∠DEF之間又有怎樣的數(shù)量關(guān)系?請(qǐng)你直接寫出結(jié)果,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,、分別是的高和角平分線,,則__________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P(1,0).點(diǎn)P第1次向上跳動(dòng)1個(gè)單位至點(diǎn)P1(1,1),緊接著第2次向左跳動(dòng)2個(gè)單位至點(diǎn)P2(-1,1),第3次向上跳動(dòng)1個(gè)單位至點(diǎn)P3,第4次向右跳動(dòng)3個(gè)單位至點(diǎn)P4,第5次又向上跳動(dòng)1個(gè)單位至點(diǎn)P5,第6次向左跳動(dòng)4個(gè)單位至點(diǎn)P6,…….照此規(guī)律,點(diǎn)P第100次跳動(dòng)至點(diǎn)P100的坐標(biāo)是( )

A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為學(xué)生開展拓展性課程,擬在一塊長比寬多6米的長方形場地內(nèi)建造由兩個(gè)大棚組成的植物養(yǎng)殖區(qū)(如圖1),要求兩個(gè)大棚之間有間隔4米的路,設(shè)計(jì)方案如圖2,已知每個(gè)大棚的周長為44米.

(1)求每個(gè)大棚的長和寬各是多少?

(2)現(xiàn)有兩種大棚造價(jià)的方案,方案一是每平方米60元,超過100平方米優(yōu)惠500元,方案二是每平方米70元,超過100平方米優(yōu)惠總價(jià)的20%,試問選擇哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B、C是數(shù)軸上的三點(diǎn),點(diǎn)C表示的數(shù)是6,點(diǎn)B與點(diǎn)C之間的距離是4,點(diǎn)B與點(diǎn)A的距離是12,點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn).

1)數(shù)軸上點(diǎn)A表示的數(shù)為   .點(diǎn)B表示的數(shù)為   ;

2)數(shù)軸上是否存在一點(diǎn)P,使點(diǎn)P到點(diǎn)A、點(diǎn)B的距離和為16,若存在,請(qǐng)求出此時(shí)點(diǎn)P所表示的數(shù);若不存在,請(qǐng)說明理由;

3)點(diǎn)P以每秒1個(gè)單位長度的速度從C點(diǎn)向左運(yùn)動(dòng),點(diǎn)Q以每秒2個(gè)單位長度從點(diǎn)B出發(fā)向左運(yùn)動(dòng),點(diǎn)R從點(diǎn)A以每秒5個(gè)單位長度的速度向右運(yùn)動(dòng),它們同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為t秒,請(qǐng)求點(diǎn)P與點(diǎn)Q,點(diǎn)R的距離相等時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.如圖 1,ABCD,直線 EF AB 于點(diǎn) E,交 CD 于點(diǎn) F,點(diǎn) G CD 上,點(diǎn) P在直線 EF 左側(cè),且在直線 AB CD 之間,連接 PE,PG.

(1) 求證: EPG=AEPPGC;

(2) 連接 EG,若 EG 平分∠PEF,AEP+ PGE=110°,PGC=EFC,求∠AEP 的度數(shù).

(3) 如圖 2,若 EF 平分∠PEBPGC 的平分線所在的直線與 EF 相交于點(diǎn) H,則∠EPG 與∠EHG之間的數(shù)量關(guān)系為      .

查看答案和解析>>

同步練習(xí)冊答案