【題目】在平行四邊形ABCD中,E是CD上一點,DE:EC=1:3,連AE,BE,BD且AE,BD交于F,則S△DEF:S△EBF:S△ABF= .
【答案】1:4:6
【解析】解:∵DE:EC=1:3, ∴DE:DC=1:4,
∵四邊形ABCD為平行四邊形,
∴DC=AB,DC∥AB,
∴DE:AB=1:4,
∵DE∥AB,
∴△DEF∽△BAF,
∴ = ,
∴ = = , =( )2= ,
∴S△DEF:S△EBF:S△ABF=1:4:6.
【考點精析】掌握平行四邊形的性質(zhì)和相似三角形的判定與性質(zhì)是解答本題的根本,需要知道平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x﹣2與反比例函數(shù)y= 的圖像交于點A(3,1)和點B.
(1)求k的值及點B的坐標;
(2)若點P是坐標平面內(nèi)一點,且以A,O,B,P為頂點構(gòu)成一個平行四邊形,請你直接寫出該平行四邊形對角線交點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】盈盈同學要證明命題“兩組對邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證
已知:如圖1,在四邊形ABCD中,BC=AD,________________________
求證:________________________
(1)填空,補全已知和求證
(2)按盈盈的想法寫出證明
(3)用文字敘述所證命題的逆命題為________________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,BE=CE,MN=1,線段MN的兩端點在CD、AD上滑動,當DM為 時,△ABE與以D、M、N為頂點的三角形相似.( )
A.
B.
C. 或
D. 或
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC、BD交于點O,BE平分∠ABC交AC于點F,交AD于點E,且∠DBF=15°,求證:(1)AO=AE; (2)∠FEO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=3,點O為對角線BD的中點,點P從點A出發(fā),沿折線AD﹣DO﹣OC以每秒1個單位長度的速度向終點C運動,當點P與點A不重合時,過點P作PQ⊥AB于點Q,以PQ為邊向右作正方形PQMN,設(shè)正方形PQMN與△ABD重疊部分圖形的面積為S(平方單位),點P運動的時間為t(秒).
(1)求點N落在BD上時t的值;
(2)直接寫出點O在正方形PQMN內(nèi)部時t的取值范圍;
(3)當點P在折線AD﹣DO上運動時,求S與t之間的函數(shù)關(guān)系式;
(4)直接寫出直線DN平分△BCD面積時t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校計劃在總費用2300元的限額內(nèi),租用客車送234名學生和6名教師集體外出活動,每輛客車上至少要有1名教師.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.
甲種客車 | 乙種客車 | |
載客量/(人/輛) | 45 | 30 |
租金/(元/輛) | 400 | 280 |
(1)共需租多少輛客車?
(2)請給出最節(jié)省費用的租車方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com