已知:如圖,⊙O與⊙O1內(nèi)切于點(diǎn)A,AO是⊙O1的直徑,⊙O的弦AC交⊙O1于點(diǎn)B,弦DF經(jīng)過(guò)點(diǎn)B且精英家教網(wǎng)垂直于OC,垂足為點(diǎn)E.
(1)求證:DF與⊙O1相切;
(2)求證:2AB2=AD•AF;
(3)若AB=2
5
,cos∠DBA=
5
5
,求AF和AD的長(zhǎng).
分析:(1)本題可連接O1B,證O1B⊥DF即可,由于OC⊥DF,因此只需證O1B∥OC即可.可通過(guò)不同圓中圓的半徑對(duì)應(yīng)的角相等來(lái)求得,由此可得證.
(2)本題可通過(guò)證△ABD和△AFC相似來(lái)求解.連接OB,則OB⊥AC,因此可根據(jù)垂徑定理得出AC=2AB,那么通過(guò)兩三角形相似得出的AD:AC=AB:AF,即可得出所求的結(jié)論.
(3)本題可先求出BF的長(zhǎng),然后根據(jù)相似三角形FCB和ACF得出的CF 2=CB•CA,求出CF的長(zhǎng),還是這兩個(gè)相似三角形,根據(jù)CF:AF=BC:CF求出AF的長(zhǎng),進(jìn)而可根據(jù)(2)的結(jié)果求出AD的長(zhǎng).
解答:精英家教網(wǎng)(1)證明:連接O1B,
∵O1B=O1A,
∴∠O1AB=∠O1BA.
∵OA=OC,
∴∠OAC=∠OCA.
∴∠O1BA=∠OCA.
∴O1B∥OC.
∵OC⊥DF,
∴O1B⊥DF.
∴DF與⊙O1相切.

(2)證明:連接OB,則OB⊥AC,
∴AC=2AB=2BC.
∵OC⊥DF,
∴弧DC=弧CF.
∴∠CAD=∠CAF.
∵∠D=∠ACF,
∴△ABD∽△AFC.
AD
AC
=
AB
AF

∵AC=2AB,
∴2AB2=AD•AF.

(3)解:直角△BEC中,BC=AB=2
5
,cos∠CBE=cos∠DBA=
BE
BC
=
5
5
,
∴BE=2,CE=4.
∵直角△OBE中,∠BOE=∠CBE=90°-∠BCO,BE=2,
∴BO=
5
,OE=1.
∴AO=OC=OE+EC=5.
連接OF,直角△OEF中,OF=OA=5,OE=1,根據(jù)勾股定理有EF=2
6
,
∴BF=2
6
+2.
∵弧DC=弧CF,
∴∠CAF=∠BFC.
∴△ACF∽△FCB.
∴CF2=CB•CA=2AB2=40.
∴CF=2
10

BF
AF
=
BC
CF

2
6
+2
AF
=
2
5
2
10
,
∴AF=4
3
+2
2

由(2)知:2AB2=AD•AF.
∴AD=4
3
-2
2
點(diǎn)評(píng):本題主要考查了切線的判定、垂徑定理、相似三角形的判定和性質(zhì)等知識(shí)點(diǎn),在(3)中通過(guò)相似三角形求出CF、AF的長(zhǎng)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、已知:如圖,⊙O1與⊙O2相交于A、B兩點(diǎn),過(guò)A的直線交⊙O1于C,交⊙O2于D,過(guò)B的直線交⊙O1于E,交⊙O2于F,且CD∥EF.
求證:CE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙O1與⊙O2相交于點(diǎn)A和點(diǎn)B,AC∥O1O2,交⊙O1于點(diǎn)C,⊙O1的半徑為5精英家教網(wǎng),⊙O2的半徑為
13
,AB=6.
求:(1)弦AC的長(zhǎng)度;
(2)四邊形ACO1O2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、已知:如圖,⊙O1與⊙O2外切于點(diǎn)P,⊙O1的半徑為3,且O1O2=8,則⊙O2的半徑R=
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•南京)已知:如圖,⊙O1與⊙O2外切于點(diǎn)P,A為⊙O1上一點(diǎn),直線AC切⊙O2于點(diǎn)C,且交⊙O1于點(diǎn)B,AP的延長(zhǎng)線交⊙O2于點(diǎn)D.
(1)求證:∠BPC=∠CPD;
(2)若⊙O1半徑是⊙O2半徑的2倍,PD=10,AB=7
6
,求PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙O1與⊙O2相交于A,B兩點(diǎn).求證:直線O1O2垂直平分AB.

查看答案和解析>>

同步練習(xí)冊(cè)答案