如圖,在△ABC中,∠CAB=75°,在同一平面內(nèi),將△ABC繞點A旋轉到△AB′C′的位置,使得CC′∥AB,則∠BAB′=


  1. A.
    30°
  2. B.
    35°
  3. C.
    40°
  4. D.
    50°
A
分析:根據(jù)旋轉的性質可得AC=AC′,∠BAC=∠B′AC′,再根據(jù)兩直線平行,內(nèi)錯角相等求出∠ACC′=∠CAB,然后利用等腰三角形兩底角相等求出∠CAC′,再求出∠BAB′=∠CAC′,從而得解.
解答:解:∵△ABC繞點A旋轉到△AB′C′的位置,
∴AC=AC′,∠BAC=∠B′AC′,
∵CC′∥AB,∠CAB=75°,
∴∠ACC′=∠CAB=75°,
∴∠CAC′=180°-2∠ACC′=180°-2×75°=30°,
∵∠BAB′=∠BAC-∠B′AC,
∠CAC′=∠B′AC′-∠B′AC,
∴∠BAB′=∠CAC′=30°.
故選A.
點評:本題考查了旋轉的性質,主要利用了旋轉變換只改變圖形的位置不改變圖形的形狀與大小的性質,等腰三角形兩底角相等的性質,平行線的性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案