如圖,在梯形紙片ABCD中,BC∥AD,∠A+∠D=90°,tanA=2,過(guò)點(diǎn)B作BH⊥AD與H,BC=BH=2.動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿運(yùn)動(dòng)到點(diǎn)停止,在運(yùn)動(dòng)過(guò)程中,過(guò)點(diǎn)交折線于點(diǎn),將紙片沿直線折疊,點(diǎn)、的對(duì)應(yīng)點(diǎn)分別是點(diǎn)。設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間是秒()。
(1)當(dāng)點(diǎn)和點(diǎn)重合時(shí),求運(yùn)動(dòng)時(shí)間的值;
(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,設(shè)或四邊形與梯形重疊部分面積為,請(qǐng)直接寫(xiě)出之間的函數(shù)關(guān)系式和相應(yīng)自變量的取值范圍;
(3)平移線段,交線段于點(diǎn),交線段。在直線上存在點(diǎn),使為等腰直角三角形。請(qǐng)求出線段的所有可能的長(zhǎng)度。
解:(1)t+1, 

△PMN的邊長(zhǎng)MN=CN-CM=CD+DN-CM=1+2t-t=t+1.
當(dāng)點(diǎn)P落在AB上時(shí),過(guò)P作PE⊥MN于E.則CE=CM+ME=t+
∴BE=6-.∵等邊△PMN,MN=t+1,
∴PE=PN·sin60°=MN·sin60°=(t+1).
在△ABC中,∠ACB=90°,∠ABC=30°,BC=6.∴AC=BC·tan30°=.
∵∠PEB=∠ACB=90°,∠PBE=∠ABC.∴△PBE∽△ABC,∴.
,解得t=
(2)當(dāng)0<t≤時(shí),△PMN在△ABC內(nèi)部.

∴S=×(t+1)×(t+1)=(t+1)2
點(diǎn)N從點(diǎn)D運(yùn)動(dòng)到與點(diǎn)B重合所需時(shí)間為:(秒)
當(dāng)<t<時(shí),△PMN與△ABC重疊部分為四邊形EFNM.

∵∠PNM=60°,∠ABC=30°,∴∠NFB=∠ABC=30°.∴NF=NB=6-(2t+1)=5-2t
∴PF=(t+1)-(5-2t)=3t-4,∵∠NFB=30°,∴∠PFE=30°.
∵∠P=60°,∴∠PEF=90°,∴PE=PF=(3t-4),EF=PF=(3t-4).
∴S△PEF EF·PE=(3t-4)2
∴S=S△PMN -S△PEF (t+1)2(3t-4)2
=-t2t-.
當(dāng)≤t<6時(shí),△PMN與△ABC重疊部分為△GMB.在Rt△GMB中,∠GBM=30°,MB=6-t.
∴GM=MB=(6-t),GB=MB=(6-t)
∴S=GM·GB=(6-t)2當(dāng)t≥6時(shí),S=0.
(3)
(1)綜合運(yùn)用梯形、直角三角形、軸對(duì)稱(chēng)的性質(zhì)、三角形相似等知識(shí),建立線段之間的等量關(guān)系;
(2)運(yùn)用分類(lèi)討論的思想,找到重疊部分面積之間的函數(shù)關(guān)系;
(3)分類(lèi)討論等腰三角形PGI的直角頂點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線經(jīng)過(guò)點(diǎn)O(0,0),A(4,0),B(5,5),點(diǎn)C是y軸負(fù)半軸上一點(diǎn),直線經(jīng)過(guò)B,C兩點(diǎn),且.

(1)求拋物線的解析式;
(2)求直線的解析式;
(3)  過(guò)O,B兩點(diǎn)作直線,如果P是直線OB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線PQ平行于y軸,交拋物線于點(diǎn)Q。問(wèn):是否存在點(diǎn)P,使得以P,Q,B為頂點(diǎn)的三角形與△OBC相似?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象經(jīng)過(guò)A(2,0)B(0,-6)兩點(diǎn)

(1)求該二次函數(shù)的解析式
(2)設(shè)該二次函數(shù)的對(duì)稱(chēng)軸與軸交于點(diǎn)C,連結(jié)BA、BC,求△ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,中,,.它的頂點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為,點(diǎn)從點(diǎn)出發(fā),沿的方向勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),沿軸正方向以相同速度運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為秒.

(1)求的度數(shù).
(2)當(dāng)點(diǎn)上運(yùn)動(dòng)時(shí),的面積(平方單位)與時(shí)間(秒)之間的函數(shù)圖象為拋物線的一部分,(如圖②),求點(diǎn)的運(yùn)動(dòng)速度.
(3)求(2)中面積與時(shí)間之間的函數(shù)關(guān)系式及面積取最大值時(shí)點(diǎn)的坐標(biāo).
(4)如果點(diǎn)保持(2)中的速度不變,那么點(diǎn)沿邊運(yùn)動(dòng)時(shí),的大小隨著時(shí)間的增大而增大;沿著邊運(yùn)動(dòng)時(shí),的大小隨著時(shí)間的增大而減小,當(dāng)點(diǎn)沿這兩邊運(yùn)動(dòng)時(shí),使的點(diǎn)有幾個(gè)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:
①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為-3和1;④a-2b+c>0. 
其中正確的命題是:          .(只要求填寫(xiě)正確命題的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線y=ax2的開(kāi)口向上,則直線y=ax-a一定不經(jīng)過(guò)第         象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖甲,在△ABC中,∠ACB為銳角.點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
解答下列問(wèn)題:
(1)如果AB=AC,∠BAC=90º.
①當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖乙,線段CF、BD之間的位置關(guān)系為     ,數(shù)量關(guān)系為     
②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖丙,①中的結(jié)論是否仍然成立,為什么?

(2)如果AB≠AC,∠BAC≠90º,點(diǎn)D在線段BC上運(yùn)動(dòng).
試探究:當(dāng)△ABC滿(mǎn)足一個(gè)什么條件時(shí),CF⊥BC(點(diǎn)C、F重合除外)?畫(huà)出相應(yīng)圖形,并說(shuō)明理由.(畫(huà)圖不寫(xiě)作法)
(3)若AC=,BC=3,在(2)的條件下,設(shè)正方形ADEF的邊DE與線段CF相交于點(diǎn)P,求線段CP長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若一次函數(shù)的圖像過(guò)第一、三、四象限,則函數(shù)(   )
A.有最大值B.有最大值C.有最小值D.有最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知:二次函數(shù)下列說(shuō)法中錯(cuò)誤的個(gè)數(shù)是 --------------(      )

A   1       B   2    C   3      D   4

查看答案和解析>>

同步練習(xí)冊(cè)答案