【題目】如圖,AC,BD相交于點O,AC平分∠DCBCDAD,∠ACD45°,∠BAC60°.

(1)證明:ADBC;

(2)求∠EAD的度數(shù);

(3)求證:∠AOB=∠DAC +∠CBD

【答案】(1)見解析;(2)75°;(3)見解析.

【解析】(1)由AC平分DCB,∠ACD=45°,可得∠BCD=90°,從而可證ADBC;

(2)由ADBC可求∠ACB=∠ACD45°,然后由三角形內(nèi)角和可求出∠ABC的度數(shù),再根據(jù)兩直線平行,同位角相等可求出∠EAD的度數(shù);;

(3)過點OOFAD,則OFBC,根據(jù)平行線的性質(zhì)可得∠AOF=∠DAC,∠FOB=∠CBD,然后等量代換可得結(jié)論.

⑴ 證明:∵AC平分∠DCB

BCD=2ACD=2×45°=90°.

CDAD,

∴∠ADC=90°,

∴∠BCD+ADC=90°+90°=180°,

ADBC;

⑵ ∵AC平分∠DCB,

ACBACD=45°,

ADBC

DAC=ACB=45°,

∴∠EAD=180°-DACBAC

=180°-45°-60°

=75°;

過點OOFAD

ADBC,

OFBC,

AOFDAC,∠FOB=∠CBD

AOBAOF+FOB=∠DAC+CBD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:甲:連接AC,作AC的垂直平分線MN分別交AD,ACBCM,O,N,連接AN,CM,則四邊形ANCM是菱形.

乙:分別作∠A,∠B的平分線AEBF,分別交BCADE,F,連接EF,則四邊形ABEF是菱形.根據(jù)兩人的作法可判斷( )

A. 甲正確,乙錯誤 B. 乙正確,甲錯誤

C. 甲、乙均正確 D. 甲、乙均錯誤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,點A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應(yīng)點B1的坐標(biāo)是(1,2),則點A1,C1的坐標(biāo)分別是 (  )

A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)

C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABO的頂點A是雙曲線y1= 與直線y2=﹣x﹣(k+1)在第二象限的交點.AB⊥x軸于B,且SABO=

(1)求這兩個函數(shù)的解析式;
(2)求△AOC的面積;
(3)直接寫出使y1>y2成立的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提高飲水質(zhì)量,越來越多的居民開始選購家用凈水器.一商家抓住商機,從廠家購進了A、B兩種型號家用凈水器共160,A型號家用凈水器進價是150/B型號家用凈水器進價是350/,購進兩種型號的家用凈水器共用去36000

1)求AB兩種型號家用凈水器各購進了多少臺;

2)為使每臺B型號家用凈水器的毛利潤是A型號的2且保證售完這160臺家用凈水器的毛利潤不低于11000,求每臺A型號家用凈水器的售價至少是多少元?(注毛利潤=售價﹣進價)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于點D,下列結(jié)論正確的有(
①AD=BD=BC;②△BCD≌△ABC;③AD2=ACDC;④點D是AC的黃金分割點.

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖所示,AB//CD,點EAD的延長線上,∠EDC與∠B互為補角.

(1)問AD,BC是否平行?請說明理由;

(2)如果∠EDC=72°,∠1=∠2=2∠CAB,求∠CAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】人民公園劃出一塊矩形區(qū)域,用以栽植鮮花.
(1)經(jīng)測量,該矩形區(qū)域的周長是72m,面積為320m2 , 請求出該區(qū)域的長與寬;
(2)公園管理處曾設(shè)想使矩形的周長和面積分別為(1)中區(qū)域的周長和面積的一半,你認(rèn)為此設(shè)想合理嗎?如果此設(shè)想合理,請求出其長和寬;如果不合理,請說明理由,并求出在(1)中周長減半的條件下矩形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏從A地出發(fā)向B地行走,同時小聰從B地出發(fā)向A地行走,如圖所示,相交于點P的兩條線段l1、l2分別表示小敏、小聰離B地的距離y(km)與已用時間x(h)之間的關(guān)系,則小敏、小聰行走的速度分別是( 。

A. 3km/h4km/h B. 3km/h3km/h

C. 4km/h4km/h D. 4km/h3km/h

查看答案和解析>>

同步練習(xí)冊答案