【題目】如圖,已知直線交坐標(biāo)軸于A、B點(diǎn),以線段AB為邊向上作正方形ABCD,過(guò)點(diǎn)A、D、C的拋物線與直線的另一個(gè)交點(diǎn)為E.
(1)求點(diǎn)C、D的坐標(biāo)
(2)求拋物線的解析式
(3)若拋物線與正方形沿射線AB下滑,直至點(diǎn)C落在x軸上時(shí)停止,求拋物線上C、E兩點(diǎn)間的拋物線所掃過(guò)的面積.
【答案】(1)C(3,2),D(1,3);(2)y=-x2+x+1;(3)10.
【解析】
試題分析:(1)分別過(guò)C、D兩點(diǎn)作x軸、y軸的垂線,利用三角形全等的關(guān)系可確定C、D兩點(diǎn)的坐標(biāo);
(2)根據(jù)A、C、D三點(diǎn)的坐標(biāo)求拋物線解析式;
(3)由平移的性質(zhì)可判斷線段CE所掃過(guò)的部分為平行四邊形,CC′為底,BC為高,由此求出C、E兩點(diǎn)間的拋物線所掃過(guò)的面積.
試題解析:(1)如圖,分別過(guò)C、D兩點(diǎn)作x軸、y軸的垂線,垂足為M、N,
由直線AB的解析式得AO=1,OB=2,
由正方形的性質(zhì)可證△ADN≌△BAO≌△CBM,
∴DN=BM=AO=1,AN=CM=BO=2,
∴C(3,2),D(1,3);
(2)設(shè)拋物線解析式為y=ax2+bx+c,
將A(0,1),C(3,2),D(1,3)三點(diǎn)坐標(biāo)代入,得,
解得,
∴y=-x2+x+1;
(3)∵AB=BC=,
由△BCC′∽△AOB,得,
∴CC′=2BC=2,
由割補(bǔ)法可知,拋物線上C、E兩點(diǎn)間的拋物線所掃過(guò)的面積=SCEE′C′=CC′×BC=2×=10,
即拋物線上C、E兩點(diǎn)間的拋物線所掃過(guò)的面積為10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=x2-3x+2的圖像與x軸的交點(diǎn)坐標(biāo)是___________,與y軸的交點(diǎn)坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果a,b互為相反數(shù),x,y互為倒數(shù),則4(a+b)+3xy的值是( 。
A. 1 B. 2 C. 3 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將拋物線y=2x2﹣12x+16繞它的頂點(diǎn)旋轉(zhuǎn)180°,所得拋物線的解析式是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列方程一定有實(shí)根的是( )
A. x2﹣4x+3=0 B. x2﹣4x+5=0 C. y2﹣4y+c=0 D. y2﹣4y+12=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的有。ā 。
、夙旤c(diǎn)在圓上的角是圓周角;②相等的圓周角所對(duì)的弧相等;③圓心角的度數(shù)等于它所對(duì)弧的度數(shù);④圓周角的度數(shù)等于它所對(duì)弧的度數(shù)的一半.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值:x(2x-y)-(x+y) (x-y) + (x-y) 2,其中x2+y2=5,xy=-2 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com