【題目】在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,對(duì)角線AC與BD相交于點(diǎn)O,線段OA,OB的中點(diǎn)分別為E,F(xiàn).
(1)求證:△FOE≌△DOC;
(2)求sin∠OEF的值;
(3)若直線EF與線段AD,BC分別相交于點(diǎn)G,H,求 的值.
【答案】
(1)
證明:∵EF是△OAB的中位線,
∴EF∥AB,EF= AB,
而CD∥AB,CD= AB,
∴EF=CD,∠OEF=∠OCD,∠OFE=∠ODC,
∴△FOE≌△DOC
(2)
解:∵EF∥AB,
∴∠OEF=∠CAB,
∵在Rt△ABC中,AC= = = BC,
∴sin∠OEF=sin∠CAB= = =
(3)
解:∵AE=OE=OC,EF∥CD,
∴△AEG∽△ACD,
∴ = ,即EG= CD,
同理FH= CD,
∴ = =
【解析】(1)由EF是△OAB的中位線,利用中位線定理,得EF∥AB,EF= AB,又CD∥AB,CD= AB,可得EF=CD,由平行線的性質(zhì)可證△FOE≌△DOC;(2)由平行線的性質(zhì)可知∠OEF=∠CAB,利用sin∠OEF=sin∠CAB= ,由勾股定理得出AC與BC的關(guān)系,再求正弦值;(3)由(1)可知AE=OE=OC,EF∥CD,則△AEG∽△ACD,利用相似比可得EG= CD,同理得FH= CD,又AB=2CD,代入 中求值.
【考點(diǎn)精析】本題主要考查了勾股定理的概念和三角形中位線定理的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為8cm,E、F、G分別是AB、CD、DA上的動(dòng)點(diǎn),且AE=BF=CG=DH.
(1)求證:四邊形EFGH是正方形;
(2)判斷直線EG是否經(jīng)過(guò)某一定點(diǎn),說(shuō)明理由;
(3)求四邊形EFGH面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】班主任張老師為了了解學(xué)生課堂發(fā)言情況,對(duì)前一天本班男、女生發(fā)言次數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成如下頻數(shù)分布折線圖(圖1).
(1)請(qǐng)根據(jù)圖1,回答下列問(wèn)題:
①這個(gè)班共有名學(xué)生,發(fā)言次數(shù)是5次的男生有人、女生有人;
②男、女生發(fā)言次數(shù)的中位數(shù)分別是次和次;
(2)通過(guò)張老師的鼓勵(lì),第二天的發(fā)言次數(shù)比前一天明顯增加,全班發(fā)言次數(shù)變化的人數(shù)的扇形統(tǒng)計(jì)圖如圖2所示,求第二天發(fā)言次數(shù)增加3次的學(xué)生人數(shù)和全班增加的發(fā)言總次數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰Rt△ABC中,∠C=90°,AC=1,過(guò)點(diǎn)C作直線l∥AB,F(xiàn)是l上的一點(diǎn),且AB=AF,則點(diǎn)F到直線BC的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某興趣小組借助無(wú)人飛機(jī)航拍校園.如圖,無(wú)人飛機(jī)從A處水平飛行至B處需8秒,在地面C處同一方向上分別測(cè)得A處的仰角為75°,B處的仰角為30°.已知無(wú)人飛機(jī)的飛行速度為4米/秒,求這架無(wú)人飛機(jī)的飛行高度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸相交于點(diǎn)A、B(m+2,0)與y軸相交于點(diǎn)C,點(diǎn)D在該拋物線上,坐標(biāo)為(m,c),則點(diǎn)A的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,將二次函數(shù)y=x2﹣1的圖象M沿x軸翻折,把所得到的圖象向右平移2個(gè)單位長(zhǎng)度后再向上平移8個(gè)單位長(zhǎng)度,得到二次函數(shù)圖象N.
(1)求N的函數(shù)表達(dá)式;
(2)設(shè)點(diǎn)P(m,n)是以點(diǎn)C(1,4)為圓心、1為半徑的圓上一動(dòng)點(diǎn),二次函數(shù)的圖象M與x軸相交于兩點(diǎn)A、B,求PA2+PB2的最大值;
(3)若一個(gè)點(diǎn)的橫坐標(biāo)與縱坐標(biāo)均為整數(shù),則該點(diǎn)稱為整點(diǎn).求M與N所圍成封閉圖形內(nèi)(包括邊界)整點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九年級(jí)(3)班數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價(jià)與銷售量的相關(guān)信息如下.已知商品的進(jìn)價(jià)為30元/件,設(shè)該商品的售價(jià)為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤(rùn)為w(單位:元).
時(shí)間x(天) | 1 | 30 | 60 | 90 |
每天銷售量p(件) | 198 | 140 | 80 | 20 |
(1)求出w與x的函數(shù)關(guān)系式;
(2)問(wèn)銷售該商品第幾天時(shí),當(dāng)天的銷售利潤(rùn)最大?并求出最大利潤(rùn);
(3)該商品在銷售過(guò)程中,共有多少天每天的銷售利潤(rùn)不低于5600元?請(qǐng)直接寫(xiě)出結(jié)果.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com