【題目】某網(wǎng)店嘗試用單價(jià)隨天數(shù)而變化的銷(xiāo)售模式銷(xiāo)售一種商品,利用30天的時(shí)間銷(xiāo)售一種成本為10元/件的商品售后,經(jīng)過(guò)統(tǒng)計(jì)得到此商品單價(jià)在第x天(x為正整數(shù))銷(xiāo)售的相關(guān)信息,如表所示:
(1)請(qǐng)計(jì)算第幾天該商品單價(jià)為25元/件?
(2)求網(wǎng)店銷(xiāo)售該商品30天里所獲利潤(rùn)y(元)關(guān)于x(天)的函數(shù)關(guān)系式;
(3)這30天中第幾天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
【答案】(1)第10天或第28天;(2);(3)第15天時(shí)獲得利潤(rùn)最大,最大利潤(rùn)為612.5元.
【解析】
試題分析:(1)分兩種情形分別代入解方程即可.
(2)分兩種情形寫(xiě)出所獲利潤(rùn)y(元)關(guān)于x(天)的函數(shù)關(guān)系式即可.
(3)分兩種情形根據(jù)函數(shù)的性質(zhì)解決問(wèn)題即可.
試題解析:(1)分兩種情況
①當(dāng)1≤x≤20時(shí),將m=25代入m=20+x,解得x=10;
②當(dāng)21≤x≤30時(shí),25=,解得x=28;
經(jīng)檢驗(yàn)x=28是方程的解,∴x=28.
答:第10天或第28天時(shí)該商品為25元/件.
(2)分兩種情況:
①當(dāng)1≤x≤20時(shí),y=(m﹣10)n=(20+x﹣10)(50﹣x)=;
②當(dāng)21≤x≤30時(shí),y=(﹣10)(50﹣x)=;
綜上所述:;
(3)①當(dāng)1≤x≤20時(shí),由=,∵a=<0,∴當(dāng)x=15時(shí),y最大值=;
②當(dāng)21≤x≤30時(shí),由,可知y隨x的增大而減小,∴當(dāng)x=21時(shí),y最大值==580元.
∵,∴第15天時(shí)獲得利潤(rùn)最大,最大利潤(rùn)為612.5元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)計(jì)一張折疊型方桌子如圖,若AO=BO=50cm,CO=DO=30cm,將桌子放平后,要使AB距離地面的高為40cm,則兩條桌腿需要叉開(kāi)的∠AOB應(yīng)為( )
A.60°
B.90°
C.120°
D.150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC , BE⊥CE于點(diǎn)E . AD⊥CE于點(diǎn)D.求證:△BEC≌△CDA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長(zhǎng)線(xiàn)上截取CG=AB,連結(jié)AD.AG.
(1)求證:AD=AG;
(2)AD與AG的位置關(guān)系如何.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃從甲、乙兩種產(chǎn)品中選擇一種生產(chǎn)并銷(xiāo)售,每年產(chǎn)銷(xiāo)x件.已知產(chǎn)銷(xiāo)兩種產(chǎn)品的有關(guān)信息如表:
其中a為常數(shù),且3≤a≤5.
(1)若產(chǎn)銷(xiāo)甲、乙兩種產(chǎn)品的年利潤(rùn)分別為萬(wàn)元、萬(wàn)元,直接寫(xiě)出、與x的函數(shù)關(guān)系式;
(2)分別求出產(chǎn)銷(xiāo)兩種產(chǎn)品的最大年利潤(rùn);
(3)為獲得最大年利潤(rùn),該公司應(yīng)該選擇產(chǎn)銷(xiāo)哪種產(chǎn)品?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(14分)在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣2,0),B(2,0),C(3,5).
(1)求過(guò)點(diǎn)A,C的直線(xiàn)解析式和過(guò)點(diǎn)A,B,C的拋物線(xiàn)的解析式;
(2)求過(guò)點(diǎn)A,B及拋物線(xiàn)的頂點(diǎn)D的⊙P的圓心P的坐標(biāo);
(3)在拋物線(xiàn)上是否存在點(diǎn)Q,使AQ與⊙P相切,若存在請(qǐng)求出Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a、b、c滿(mǎn)足|a﹣ |+ +(c﹣4 )2=0.
(1)求a、b、c的值;
(2)判斷以a、b、c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com