【題目】如圖,有、、三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應建在(

A.在∠A、∠B兩內(nèi)角平分線的交點處

B.ACBC兩邊垂直平分線的交點處

C.AC、BC兩邊高線的交點處

D.ACBC兩邊中線的交點處

【答案】B

【解析】

要求到三小區(qū)的距離相等,首先思考到A小區(qū)、C小區(qū)距離相等,根據(jù)線段垂直平分線定理的逆定理,滿足條件的點在線段AC的垂直平分線上,同理到B小區(qū)、C小區(qū)的距離相等的點在線段BC的垂直平分線上,即可得到答案.

解:根據(jù)線段的垂直平分線的性質(zhì):線段的垂直平分線上的點到線段的兩個端點的距離相等.

∴超市應建在ACBC兩邊垂直平分線的交點處.

故選擇:B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】.如圖,矩形ABCD中,OAC中點,過點O的直線分別與AB、CD交于點E、F,連結(jié)BFAC于點M,連結(jié)DE、BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB③DE=EF;④SAOESBCM=23.其中正確結(jié)論的個數(shù)是( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD中,∠B90°,AB3,BC4CD12,AD13,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段AB上一點,點DBC的中點,且AB18cmAC4CD

1)圖中共有   條線段;

2)求AC的長;

3)若點E在直線AB上,且EA2cm,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+cx軸交于點A30),與y軸交于點B,拋物線y=x2+bx+c經(jīng)過點A,B

1)求點B的坐標和拋物線的解析式;

2Mm0)為x軸上一動點,過點M且垂直于x軸的直線與直線AB及拋物線分別交于點P,N

①點M在線段OA上運動,若以B,P,N為頂點的三角形與APM相似,求點M的坐標;

②點Mx軸上自由運動,若三個點MP,N中恰有一點是其它兩點所連線段的中點(三點重合除外),則稱M,P,N三點為共諧點.請直接寫出使得MP,N三點成為共諧點m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,坡AB的坡比為1:2.4,坡長AB=130米,坡AB的高為BT.在坡AB的正面有一棟建筑物CH,點H、A、T在同一條地平線MN上.

(1)試問坡AB的高BT為多少米?

(2)若某人在坡AB的坡腳A處和中點D處,觀測到建筑物頂部C處的仰角分別為60°30°,試求建筑物的高度CH.(精確到米, ≈1.73, ≈1.41)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列關于xy的方程。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在正方形中,是對角線上的一點,點的延長線上,且

求證:

求證:

把正方形改為菱形,其他條件不變(如圖②),且,求的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分學生成績進行統(tǒng)計(滿分100分,學生成績?nèi)≌麛?shù)),并按照成績從低到高分成、、五個小組,繪制統(tǒng)計圖如下(未完成),解答下列問題:

1)樣本容量為______,頻數(shù)分布直方圖中______

2)扇形統(tǒng)計圖中小組所對應的扇形圓心角為______度,并補全頻數(shù)分布直方圖;

3)若成績在80分以上(不含80分)為優(yōu)秀,全校共有2000名學生,估計成績優(yōu)秀的學生有多少名?

查看答案和解析>>

同步練習冊答案