(1)解:∵sina=
且a為銳角,
∴a=60°,即∠BOA=∠MPN=60°.
∴初始狀態(tài)時,△PON為等邊三角形,
∴ON=OP=2,當PM旋轉(zhuǎn)到PM'時,點N移動到N',
∵∠OPM'=30°,∠BOA=∠M'PN'=60°,
∴∠M'N'P=30°.
在Rt△OPM'中,ON'=2PO=2×2=4,
∴NN'=ON'-ON=4-2=2,
∴點N移動的距離為2;
(2)證明:在△OPN和△PMN中,
∠PON=∠MPN=60°,∠ONP=∠PNM,
∴△OPN∽△PMN;
(3)解:∵MN=ON-OM=y-x,
∴PN
2=ON•MN=y(y-x)=y
2-xy.
過P點作PD⊥OB,垂足為D.
在Rt△OPD中,
OD=OP•cos60°=2×
=1,PD=POsin60°=
,
∴DN=ON-OD=y-1.
在Rt△PND中,
PN
2=PD
2+DN
2=(
)
2+(y-1)
2=y
2-2y+4.
∴y
2-xy=y
2-2y+4,
即y=
;
(4)解:在△OPM中,OM邊上的高PD為
,
∴S=
•OM•PD=
•x•
x.
∵y>0,
∴2-x>0,即x<2.
又∵x>0,
∴x的取值范圍是0<x<2.
∵S是x的正比例函數(shù),且比例系數(shù)
,
∴0<S<
×2,即0<S<
.
分析:(1)當PM旋轉(zhuǎn)到PM′時,點N移動到點N′,點N移動的距離NN′=ON′-ON;
(2)已知兩三角形兩角對應(yīng)相等,可利用AAA證相似
(3)可由(2)問的三角形相似得到y(tǒng)與x之間的函數(shù)關(guān)系式.
(4)根據(jù)圖形得出S的關(guān)系式,然后在圖形內(nèi)根據(jù)x的取值范圍確定S的取值范圍.
點評:此題是一個綜合性很強的題目,主要考查等邊三角形的性質(zhì)、三角形相似、旋轉(zhuǎn)的特征、解直角三角形、函數(shù)等知識.難度很大,有利于培養(yǎng)同學們鉆研和探索問題的精神.