在矩形ABCD中,AB=2,AD=4,以AB的垂直平分線為x軸,AB所在的直線為y軸,建立如圖所示的精英家教網(wǎng)平面直角坐標系.
(1)求點的坐標:A
 
,B
 
,C
 
,
 
,AD的中點E
 
;
(2)求以E為頂點,對稱軸平行于y軸,并且經(jīng)過點B,C的拋物線的解析式;
(3)求對角線BD與上述拋物線除點B以外的另一交點P的坐標;
(4)△PEB的面積S△PEB與△PBC的面積S△PBC具有怎樣的關系?證明你的結論.
分析:(1)根據(jù)題意和圖象可知OA=OB=1,AD=BC=4,所以(0,1),B(0,-1),C(4,-1),D(4,1),E(2,1);
(2)根據(jù)題意可設拋物線的解析式為y=a(x-2)2+1,把點B(0,-1)代入可得a=-
1
2
,即可求得二次函數(shù)的解析式;
(3)利用直線BD的解析式為y=
1
2
x-1,和拋物線解析式聯(lián)立成方程組即可求得交點坐標為P(3,
1
2
);
(4)分別求出S△PEB=
1
2
S△PBC•S△PBC=
1
2
×4×
3
2
=3,S△PEB=
1
2
×(1×2+1×1)=
3
2
,從而證明S△PEB=
1
2
S△PBC
解答:精英家教網(wǎng)解:(1)A(0,1),B(0,-1),C(4,-1),D(4,1),E(2,1);

(2)設拋物線的解析式為y=a(x-2)2+1,
∵拋物線經(jīng)過點B(0,-1),
∴a(0-2)2+1=-1,解得a=-
1
2
,
∴拋物線的解析式為y=-
1
2
(x-2)2+1,
經(jīng)驗證,拋物線y=-
1
2
(x-2)2+1經(jīng)過點C(4,-1);

(3)直線BD的解析式為y=
1
2
x-1,解方程組得點P的坐標:P(3,
1
2
);

(4)S△PEB=
1
2
S△PBC•S△PBC=
1
2
×4×
3
2
=3,S△PEB=
1
2
×(1×2+1×1)=
3
2
,
∴S△PEB=
1
2
S△PBC
點評:主要考查了坐標的對稱特點和二次函數(shù)中的有關性質.本題是數(shù)形結合的綜合題,要熟練運用解析式與點的坐標之間的關系求解.把幾何圖形有機的和二次函數(shù)結合起來.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

7、如圖,在矩形ABCD中,DE平分∠ADC交BC于點E,EF⊥AD交AD于點F,若EF=3,AE=5,則AD等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4,BC=7,P是BC邊上與B點不重合的動點,過點P的直線交CD的延長線于R,交AD于Q(Q與D不重合),且∠RPC=45°,設BP=x,梯形ABPQ的面積為y,求y與x之間的函數(shù)關系,并求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,F(xiàn)是BC邊上一點,AF的延長線交DC的延長線于G,DE⊥AG于E,且DE=DC.求證:AE=BF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在矩形ABCD中,AB=8,AD=6,E為AB邊上一點,連接DE,過C作CF垂直DE.
(1)求證:△CDF∽△DEA;
(2)若設CF=x,DE=y,求y與x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AF、BE、CE、DF分別是矩形的四個角的角平分線,E、M、F、N是其交點,求證:四邊形EMFN是正方形.

查看答案和解析>>

同步練習冊答案