【題目】如圖1,ABCD為正方形,直線MN分別過AD邊與BC邊的中點,點P為直線MN上任意一點,連接PB、PC分別與AD邊交于E、F兩點,PC與BD交于點K,連接AK與PB交于點G.

(1)探索發(fā)現(xiàn)
當點P落在AD邊上時,如圖2,試探究PB與AK的位置關(guān)系以及PB、PK、AK三者的數(shù)量關(guān)系(直接寫出無需證明);
(2)延伸拓展
當點P落在正方形外,如圖1,以上兩個結(jié)論是否仍然成立?如果成立請給出證明,如果不成立請說明你的理由;
(3)應用推廣
如圖3,在等腰Rt△ABD中,其中∠BAD=90°,腰長為3,M、N分別為AD邊與BD邊的中點,K為線段DN中點,F(xiàn)為AD邊上靠近于D的三等分點.連接KF并延長與直線MN交于點P,連接PB分別與AD、AK交于點E、G.試求四邊形EFKG的周長及面積.

【答案】
(1)

解:PB⊥AK,PB=PK+AK;

理由:如圖2中,

∵點P在MN上,根據(jù)對稱性易得∠PBC=∠2且PB=PC,

又∠ABK=∠CBK=45°,

在△BKA和△BKC中,

∴△ABK≌△CBK,

∴∠2=∠3且AK=CK,

∴∠PBC=∠3.

又∠PBC+∠4=90°,

∴∠3+∠4=90°,

即PB⊥AK.

∴PB=PC=PK+CK=PK+AK.


(2)

以上兩個結(jié)論仍然成立,

理由如下:如圖1中,

∵點P在MN上,根據(jù)對稱性易得∠PBC=∠2且PB=PC,

又∠ABK=∠CBK=45°,

在△BKA和△BKC中,

∴△ABK≌△CBK,

∴∠2=∠3且AK=CK,

∴∠PBC=∠3.

又∠PBC+∠4=90°,

∴∠3+∠4=90°,

即PB⊥AK.

∴PB=PC=PK+CK=PK+AK.


(3)

如圖3中,過點B作AD的平行線交PK延長線與點C,連接CD.

∵FD∥BD,

∴△FDK∽△CBK.

又DK:BK=1:3,

∴FD:BC=1:3.

∵FD:AD=1:3,

∴BC=AD.

∵BC∥AD且AB⊥AD且AB=AD,

∴四邊形ABCD為正方形.

∵PB=PK+AK,

即(PE+BE)=(PF+FK)+AK,又PE=PF,

∴BE=FK+AK.

在Rt△EAB中,∵AE=1,AB=3,

∴BE= =

∵AG⊥BE(上一問結(jié)論),

∵Rt△AGE∽Rt△BGA,且相似比為1:3,

設(shè)EG=t,AG=3t,BG=9t,

∴BE=10t= ,

∴四邊形EFKG的周長=EF+FK+GK+EG=EF+(FK+AK)﹣AG+EG

=EF+BE﹣AG+EG=1+10t﹣3t+t=1+8t=

過點K作AD垂線,垂足為H,

∵HK∥AB且DK:DB=1:4,

∴KH= AB= ,

∴S四邊形EFGH=SAFK﹣SAEG= AFKH﹣ AGEG= 2 3tt=


【解析】●探索發(fā)現(xiàn) PB⊥AK,PB=PK+AK,只要證明∠3=∠4=90°即可證明PB⊥AK,由△ABK≌△CBK,結(jié)合PB=PC即可解決問題.
●延伸拓展 以上兩個結(jié)論仍然成立,證明方法類似上面.
●應用推廣 如圖3中,過點B作AD的平行線交PK延長線與點C,連接CD,利用上面結(jié)論結(jié)合條件即可解決問題.
【考點精析】解答此題的關(guān)鍵在于理解相似三角形的應用的相關(guān)知識,掌握測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構(gòu)造相似三角形求解.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,點O為△ABD的外心,點C為直徑BD下方弧BCD上一點,且不與點B,D重合,∠ACB=∠ABD=45°,則下列對AC,BC,CD之間的數(shù)量關(guān)系判斷正確的是(
A.AC=BC+CD
B. AC=BC+CD
C. AC=BC+CD
D.2AC=BC+CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結(jié)論: ①四邊形CFHE是菱形;②線段BF的取值范圍為3≤BF≤4;
③EC平分∠DCH;④當點H與點A重合時,EF=2
以上結(jié)論中,你認為正確的有 . (填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足為O,AD∥BC,且AB=5,BC=12,則AD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為增強學生的身體素質(zhì),教育行政部門規(guī)定學生每天參加戶外活動的平均時間不少于1小時.為了解學生參加戶外活動的情況,對部分學生參加戶外活動的時間進行抽樣調(diào)查,并將調(diào)查結(jié)果繪制作成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)一共調(diào)查了多少名學生;
(2)請補全條形統(tǒng)計圖;
(3)若該校共有6000名學生,根據(jù)以上調(diào)查結(jié)果估計該校全體學生每天參與戶外活動所用的總時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方成同學看到一則材料,甲開汽車,乙騎自行車從M地出發(fā)沿一條公路勻速前往N地,設(shè)乙行駛的時間為t(h),甲乙兩人之間的距離為y(km),y與t的函數(shù)關(guān)系如圖1所示,方成思考后發(fā)現(xiàn)了圖1的部分正確信息,乙先出發(fā)1h,甲出發(fā)20分鐘后與乙相遇,…,請你幫助方成同學解決以下問題:
(1)分別求出線段BC,CD所在直線的函數(shù)表達式;
(2)當15<y<25時,求t的取值范圍;
(3)分別求出甲、乙行駛的路程S、S與時間t的函數(shù)表達式,并在圖2所給的直角坐標系中分別畫出它們的圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,10個邊長為1的正方形如圖擺放在平面直角坐標系中,經(jīng)過原點的一條直線l將這10個正方形分成面積相等的兩部分,則該直線l的解析式為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在BC,CD上,△AEF是等邊三角形,連接AC交EF于點G,下列結(jié)論:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤SCEF=2SABE , 其中結(jié)論正確的個數(shù)為( )

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(π﹣3.14)0+(﹣1)2015+|1﹣ |﹣3tan30°.

查看答案和解析>>

同步練習冊答案