已知二次函數(shù)y=x2-(m-2)x+m的圖象經(jīng)過(-1,15),
(1)求m的值;
(2)設此二次函數(shù)的圖象與x軸的交點為A、B,圖象上的點C使△ABC的面積等于1,求C點的坐標;
(3)當△ABC的面積大于3時,求點C橫坐標的取值范圍?
【答案】
分析:(1)根據(jù)二次函數(shù)y=x
2-(m-2)x+m的圖象經(jīng)過(-1,15),得出m的值即可;
(2)將(1)中m的值,得出二次函數(shù)解析式,即可得出與x軸的交點坐標,進而得出C點的坐標;
(3)由(2)得出:當△ABC的面積大于3時,即x
2-6x+8>3,即可得出答案.
解答:解:(1)∵二次函數(shù)y=x
2-(m-2)x+m的圖象經(jīng)過(-1,15),
∴代入解析式得:15=1-(m-2)×(-1)+m,
解得:m=8;
(2)∵m=8,
∴二次函數(shù)解析式為y=x
2-6x+8,
與x軸交點坐標為:0=x
2-6x+8,
∴x
1=2,x
2=4,
∴此二次函數(shù)的圖象與x軸的交點為A(2,0)、B(4,0),
∵圖象上的點C使△ABC的面積等于1,
∴當C在x軸上方是:
×AB×C′F=1,
∵AB=1,
∴C′F=1,
∴1=x
2-6x+8,
∴x=3
,
C′(3+
,1),C″(3-
,1),
當C在頂點坐標時C(3,-1);
(3)由(2)得出:
當△ABC的面積大于3時,
∴x
2-6x+8>3,
當x
2-6x+8=3時,
x
1=1,x
2=5,
∴x
2-6x+8>3時,
∴x<1或x>5,
∴點C橫坐標的取值范圍:x<1或x>5.
點評:此題主要考查了圖象上點的性質(zhì)以及三角形面積求法和數(shù)形結合求二次不等式解集,利用數(shù)形結合得出不等式的解集是解決問題的關鍵.