等邊三角形的性質(zhì)
(1)等邊三角形的三個(gè)內(nèi)角都
相等
相等
,并且每一個(gè)角都等于
60°
60°

(2)等邊三角形是軸對(duì)稱圖形,共有
條對(duì)稱軸.
(3)等邊三角形每邊上的
中線
中線
、
高線
高線
和該邊所對(duì)內(nèi)角的平分線互相重合.
分析:(1)根據(jù)等邊三角形性質(zhì)中內(nèi)角度數(shù)進(jìn)而填空得出;
(2)利用軸對(duì)稱圖形的性質(zhì)得出即可;
(3)根據(jù)等腰三角形性質(zhì)三線合一的性質(zhì)可得出.
解答:解:(1)等邊三角形的三個(gè)內(nèi)角都相等,并且每一個(gè)角都等于60°;

(2)等邊三角形是軸對(duì)稱圖形,它有三條對(duì)稱軸;

(3)等邊三角形每邊上的中線、高線和該邊所對(duì)內(nèi)角的平分線互相重合.
故答案為:(1)相等,60°;(2)三;(3)中線,高線.
點(diǎn)評(píng):此題主要考查了等三角形的性質(zhì),熟練掌握其性質(zhì)是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,AB為⊙O的直徑,P為AB延長(zhǎng)線上一點(diǎn),PD切⊙O于C,BC和AD的延長(zhǎng)線相交于點(diǎn)E,且AB=AE。 (1)求證:(2)若圓的半徑為1,△ABE是等邊三角形,求BP的長(zhǎng).

【解析】(1)連OC,根據(jù)切線的性質(zhì)得到OC⊥PD,又AB=AE,OC=OB,則∠2=∠E,∠1=∠2,得到∠1=∠E,則OC∥AE,即可得到結(jié)論;

(2)根據(jù)等邊三角形的性質(zhì)得∠A=60°,則∠COB=60°,則∠P=30°,再根據(jù)含30°的直角三角形三邊的關(guān)系得到OP=2OC=2,從而求出BP

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,分別以RtABC的直角邊AC及斜邊AB向外作等邊△ACD、等邊△ABE.已知∠BAC=30º,EFAB,垂足為F,連結(jié)DF

(1)求證:ACEF;

(2)求證:四邊形ADFE是平行四邊形.

【解析】由等邊△ABE和Rt△ABC,求得Rt△ABC∽R(shí)t△EAF,即可得AC=EF,由等邊三角形的性質(zhì)得出∠BDF=30°,從而證得△DBF≌△EFA,則AE=DF,再由FE=AB,得出四邊形ADFE為平行四邊形

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省泰州市靖江外國(guó)語(yǔ)學(xué)校中考二模數(shù)學(xué)卷(解析版) 題型:解答題

如圖所示,AB為⊙O的直徑,P為AB延長(zhǎng)線上一點(diǎn),PD切⊙O于C,BC和AD的延長(zhǎng)線相交于點(diǎn)E,且AB=AE。 (1)求證: (2)若圓的半徑為1,△ABE是等邊三角形,求BP的長(zhǎng).

【解析】(1)連OC,根據(jù)切線的性質(zhì)得到OC⊥PD,又AB=AE,OC=OB,則∠2=∠E,∠1=∠2,得到∠1=∠E,則OC∥AE,即可得到結(jié)論;

(2)根據(jù)等邊三角形的性質(zhì)得∠A=60°,則∠COB=60°,則∠P=30°,再根據(jù)含30°的直角三角形三邊的關(guān)系得到OP=2OC=2,從而求出BP

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆北京市西城區(qū)九年級(jí)一模數(shù)學(xué)卷(解析版) 題型:解答題

如圖,分別以RtABC的直角邊AC及斜邊AB向外作等邊△ACD、等邊△ABE.已知∠BAC=30º,EFAB,垂足為F,連結(jié)DF

(1)求證:ACEF;

(2)求證:四邊形ADFE是平行四邊形.

【解析】由等邊△ABE和Rt△ABC,求得Rt△ABC∽R(shí)t△EAF,即可得AC=EF,由等邊三角形的性質(zhì)得出∠BDF=30°,從而證得△DBF≌△EFA,則AE=DF,再由FE=AB,得出四邊形ADFE為平行四邊形

 

查看答案和解析>>

同步練習(xí)冊(cè)答案