國家發(fā)改委日前表示,居民階梯電價方案將在今年上半年推出,按發(fā)改委先前公布的《居民用電實行階梯電價的指導(dǎo)意見(征求意見稿)》的標準,繪制了居民每月電費y(元)隨本月用電量x(度)變化的圖象.根據(jù)圖象中的有關(guān)數(shù)據(jù)解答下列問題:
(1)當(dāng)x≤110時,按方案一,每度電______元;當(dāng)x≤140時,按方案二,每度電______元.
(2)當(dāng)110≤x≤210時,按方案一,求y與x的函數(shù)關(guān)系式.
(3)經(jīng)調(diào)查約80的居民用電量在140度到210度之間,這兩種方案哪一種對這部分居民來說更省錢?
(1)當(dāng)x≤110時,按方案一,每度電價=
57.2
110
=0.52元;當(dāng)x≤140時,按方案二,每度電價=
74.2
140
=0.53元;
故答案為0.52,0.53;

(2)設(shè)方案一中y與x的函數(shù)關(guān)系式為y=kx+b,
把點(110,57.2)和點(210,114.2)代入得
110k+b=57.2
210k+b=114.2
,
解得
k=0.57
b=-5.5
,
故y=0.57x-5.5(110≤x≤210);

(3)當(dāng)140≤x≤270時,設(shè)方案二中y與x的函數(shù)關(guān)系式為y=ax+b,
把點(140,74.2)和點(270,149.6)代入得
140m+n=74.2
270m+n=149.6

解得
m=0.58
n=-7
,
則方案二中y與x的函數(shù)關(guān)系式為y=0.58x-7(140≤x≤270),
方案一中y與x的函數(shù)關(guān)系式為y=0.57x-5.5(110≤x≤210);
令0.58x-7=0.57x-5.5,
解得x=150.
所以居民用電量為150度時,兩種方案一樣;居民用電量在140度到150度之間,方案二省錢;當(dāng)居民用電量在150度到210度之間時,方案一省錢.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖表示甲、乙兩名賽車選手在一次自行車越野賽中,路程y(km)隨時間x(min)變化的圖象(全程),根據(jù)圖象回答下列問題:
(1)甲、乙兩名賽車選手中,______先到達終點,寫出乙運動員的路程y與時間x的函數(shù)關(guān)系式______,這次比賽的全程是______km;
(2)寫出甲的速度慢于乙的速度時,時間x的取值范圍:______;
(3)比賽開始______min時,兩人第二次相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC,∠BAC=90°,AB=AC=4,分別以AC,AB所在直線為x軸,y軸建立直角坐標系(如圖).點M(m,n)是直線BC上的一個動點,設(shè)△MAC的面積為S.
(1)求直線BC的解析式;
(2)求S關(guān)于m的函數(shù)解析式;
(3)是否存在點M,使△AMC為等腰三角形?若存在,求點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標系中,OABC是正方形,點A的坐標是(4,0),點P為邊AB上一點,沿CP折疊正方形,折疊后點B落在平面內(nèi)點B′處,已知CB′的解析式為y=-
3
x+b,則B′點的坐標為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系xoy中,⊙O1與x軸交于A、B兩點,與y軸正半軸交于C點,已知A(-1,0),O1(1,0)
(1)求出C點的坐標.
(2)過點C作CDAB交⊙O1于D,連接BD,求證:四邊形ABDC是等腰梯形.
(3)若過點C的直線恰好平分四邊形ABCD的面積,求出該直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標系中,ON為過原點的一條直線,點E、F為x、y軸上的任意兩點,P為直線ON上一動點(不與原點O重合),PM⊥x軸于M點.
(1)若P(a,a)為直線ON上在第一象限內(nèi)的任意一點,求直線ON的解析式;
(2)連接PE、PF,若∠PFO+∠PEO=180°,在(1)的條件下,試問線段PE與PF之間是否存在一定的數(shù)量關(guān)系,并說明理由;
(3)當(dāng)P在直線ON上的第一象限內(nèi)任意運動時,在(1)和(2)的條件下,
OE+OF
OM
是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=x與y=-x+2交于點A,點P是直線OA上一動點(點A除外),作PQx軸交直線y=-x+2于點Q,以PQ為邊,向下作正方形PQMN,設(shè)點P的橫坐標為t.
(1)求交點A的坐標;
(2)寫出點P從點O運動到點A過程中,正方形PQMN與△OAB重疊的面積s與t的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量t的取值范圍;
(3)是否存在點Q,使△OCQ為等腰三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系中有兩條直線:y=
3
5
x+
9
5
和y=-
3
2
+6,它們的交點為P,且它們與x軸的交點分別為A,B.
(1)求A,B,P的坐標;(2)求△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一次函數(shù)的圖象經(jīng)過M點,與x軸交于A點,與y軸交于B點,根據(jù)圖中信息求:
(1)直線AB的函數(shù)關(guān)系式;
(2)若點P(m,n)是直線AB上的一動點,且-3≤m≤2,求n的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案