(2012•舟山)如圖,A、B兩點在河的兩岸,要測量這兩點之間的距離,測量者在與A同側的河岸邊選定一點C,測出AC=a米,∠A=90°,∠C=40°,則AB等于( 。┟祝
分析:直接根據(jù)銳角三角函數(shù)的定義進行解答即可.
解答:解:∵△ABC中,AC=a米,∠A=90°,∠C=40°,
∴tan∠C=tan40°=
AB
AC

∴AB=atan40°.
故選C.
點評:本題考查的是解直角三角形的應用及銳角三角函數(shù)的定義,熟知銳角三角函數(shù)的定義是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•舟山)如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•舟山)如圖,已知△ABC中,∠CAB=∠B=30°,AB=2
3
,點D在BC邊上,把△ABC沿AD翻折使AB與AC重合,得△AB′D,則△ABC與△AB′D重疊部分的面積為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•舟山)如圖,已知⊙O的半徑為2,弦AB⊥半徑OC,沿AB將弓形ACB翻折,使點C與圓心O重合,則月牙形(圖中實線圍成的部分)的面積是
4
3
π+2
3
4
3
π+2
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•舟山)如圖,在Rt△ABC中,AB=BC,∠ABC=90°,點D是AB的中點,連接CD,過點B作BG⊥CD,分別交CD,CA于點E,F(xiàn),與過點A且垂直于AB的直線相交于點G,連接DF,給出以下五個結論:
AG
AB
=
FG
FB
;②∠ADF=∠CDB;③點F是GE的中點;④AF=
2
3
AB;⑤S△ABC=5S△BDF,
其中正確結論的序號是
①②④
①②④

查看答案和解析>>

同步練習冊答案